15.已知數(shù)列{an}是等比數(shù)列,且a2=-$\frac{1}{4}$,a5=2,則{an}的公比q為( 。
A.$-\root{3}{2}$B.$-\frac{1}{2}$C.-2D.$-\root{3}{0.5}$

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵a2=-$\frac{1}{4}$,a5=2,
∴2=$-\frac{1}{4}{q}^{3}$,解得q=-2.
故選:C.

點(diǎn)評(píng) 本題考查了比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F(1,0),O為坐標(biāo)原點(diǎn),A、B是拋物線C上異于O的兩點(diǎn).
(1)求拋物線C的方程;
(2)若OA⊥OB,求證直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{\sqrt{x+4}}{x+2}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-4,+∞)B.(-2,+∞)C.[-4,-2)D.[-4,-2)∪(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知正四面體(所有棱長(zhǎng)都相等的三棱錐)的俯視圖如圖所示,其中四邊形ABCD是邊長(zhǎng)為$\sqrt{2}$cm的正方形,則這個(gè)正四面體的主視圖的面積為( 。ヽm2
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是減函數(shù),則a的取值范圍是( 。
A.$(0,\frac{1}{2}]$B.(0,1)C.$(\frac{1}{2},1)$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,B=45°,AC=$\sqrt{5}$,cosC=$\frac{{\sqrt{5},}}{5}$,求
(1)求BC的長(zhǎng);
(2)若點(diǎn)D是AB的中點(diǎn),求中線CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{{2\sqrt{3}}}{3}$,E為BC中點(diǎn),F(xiàn)在棱PD上,AF⊥PD,點(diǎn)B到平面AEF的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$(x∈R)的最小值為( 。
A.2B.3C.2$\sqrt{2}$D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),令函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間.
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,f(A)=-1,a=$\sqrt{7}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,求邊b和c的值(b>c).

查看答案和解析>>

同步練習(xí)冊(cè)答案