3.求函數(shù)f(x)=sin(x+$\frac{π}{6}$)在x取得何值時達(dá)到最大值?在x取得何值時達(dá)到最小值?

分析 再利用正弦函數(shù)的定義域和值域,求得當(dāng)角x取何值時函數(shù)取得最大值和最小值.

解答 解:當(dāng)x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$時,即x=2kπ+$\frac{π}{3}$,k∈Z時,函數(shù)f(x)取的最大值,最大值為1,
當(dāng)x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$時,即x=2kπ-$\frac{2}{3}$π,k∈Z時,函數(shù)f(x)取的最小值,最小值為-1,

點評 本題主要考查正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.解關(guān)于x的不等式ax2-(a+1)x+1<0(a>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x+$\frac{4}{x}$.
(1)判斷函數(shù)f(x)的奇偶性,寫出判斷過程;
(2)證明f(x)在區(qū)間(0,2]是單調(diào)減函數(shù),在區(qū)間[2,+∞)上是單調(diào)增函數(shù);
(3)當(dāng)x∈(0,+∞)時,試求函數(shù)f(x)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=2sin(πx)-$\frac{1}{1-x}$,x∈[-2,4]的所有零點之和為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)對任意的實數(shù)滿足:f(x+3)=-$\frac{1}{f(x)}$,且當(dāng)-3≤x<-1時,f(x)=-(x+2)2,當(dāng)-1≤x<3時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2014)=337.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等差數(shù)列{an}中,若a3=16,S20=20,則S10=110.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,若(a+b+c)(b+c-a)=3bc,則∠A等于( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}或\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-3x2+2.
(1)求函數(shù)的單調(diào)區(qū)間;  
(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“方程x2-4=0的解是x=±2”中,使用的邏輯聯(lián)結(jié)詞的情況是( 。
A.沒有使用聯(lián)結(jié)詞B.使用了邏輯聯(lián)結(jié)詞“或”
C.使用了邏輯聯(lián)結(jié)詞“且”D.使用了邏輯聯(lián)結(jié)詞“非”

查看答案和解析>>

同步練習(xí)冊答案