16.已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動(dòng),為了解本次考試學(xué)生的某學(xué)科成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(滿分100分),得分取整數(shù),抽取得學(xué)生的分?jǐn)?shù)均在[50,100]內(nèi)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出的頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)在選取的樣本中,從成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“升級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽”,求所抽取的2名學(xué)生中恰有1人得分在[90,100]內(nèi)的概率.

分析 (1)由頻率分布直方圖可求出分?jǐn)?shù)在50到60的頻率,由莖葉圖可得出分?jǐn)?shù)在50到60的人數(shù),由此可得樣本容量n.又由莖葉圖可得分?jǐn)?shù)在90到100的人數(shù),從而求得y.這樣除了60到70分這一組之外,其余各組的頻率都知道了,也就可以求出x的值.
(2)分?jǐn)?shù)在[80,90)有5人,分?jǐn)?shù)在[90,100)有2人,共7人.從成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“升級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽”,先求出基本事件總數(shù)n=${C}_{7}^{2}$=21,所抽取的2名學(xué)生中恰有1人得分在[90,100]內(nèi)包含的基本事件個(gè)數(shù)m=${C}_{5}^{1}{C}_{2}^{1}$=10,由此能求出所抽取的2名學(xué)生中恰有1人得分在[90,100]內(nèi)的概率.

解答 解:(1)由題意可知,樣本容量n=$\frac{8}{0.016×10}$=50,
y=$\frac{2}{50×10}$=0.004,
x=0.1-0.004-0.010-0.016-0.004=0.030.
(2)由題意可知,分?jǐn)?shù)在[80,90)有5人,分?jǐn)?shù)在[90,100)有2人,共7人.
從成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“升級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽”,
基本事件總數(shù)n=${C}_{7}^{2}$=21,
所抽取的2名學(xué)生中恰有1人得分在[90,100]內(nèi)包含的基本事件個(gè)數(shù):
m=${C}_{5}^{1}{C}_{2}^{1}$=10,
∴所抽取的2名學(xué)生中恰有1人得分在[90,100]內(nèi)的概率p=$\frac{m}{n}=\frac{10}{21}$.

點(diǎn)評(píng) 本題考查頻率分布直方圖、概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),右焦點(diǎn)為F(c,0),A(0,2),且|AF|=$\sqrt{7}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為y=kx+m,當(dāng)直線l與橢圓C有唯一公共點(diǎn)M時(shí),作OH⊥l于H(O為坐標(biāo)原點(diǎn)),若|MH|=$\frac{3}{5}$|OM|,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知單位向量$\vec a,\vec b$,若向量$2\vec a-\vec b$與$\vec b$垂直,則向量$\vec a$與$\vec b$的夾角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸出的n=5,則輸入的整數(shù)p的最小值為( 。
A.15B.14C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將f(x)=|x-1|寫(xiě)成分段函數(shù)形式為f(x)=$\left\{\begin{array}{l}{x-1,x≥1}\\{1-x,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了增強(qiáng)消防安全意識(shí),某中學(xué)對(duì)全體學(xué)生做了依稀消防知識(shí)講座,從男生中隨機(jī)抽取50人,從女生中隨機(jī)抽取70人參加消防知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:
 優(yōu)秀非優(yōu)秀總計(jì)
男生153550
女生304070
總計(jì)4575120
(參考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
 P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010
k01.323  2.072 2.706 3.841 5.024 6.635 
(1)試判斷能否認(rèn)為消防知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);
(2)為了宣傳消防知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6人組成宣傳小組,先從6人中隨機(jī)抽取2人到校外宣傳,求到校外宣傳的同學(xué)中有男同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.?dāng)?shù)列$\sqrt{3}$,$\sqrt{7}$,$\sqrt{11}$,$\sqrt{15}$,…的一個(gè)通項(xiàng)公式是( 。
A.an=$\sqrt{4n+1}$B.an=$\sqrt{4n-1}$C.an=$\sqrt{2n+1}$D.an=$\sqrt{2n+3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若(1+2x)100=a0+a1(x-1)+a2(x-1)2+…+a100(x-1)100,則a1+a2+…+a100=5100-3100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若$a=1,b=\sqrt{3},C={30^0}$,則c=1,△ABC的面積S=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案