3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),直線l:y=2x-2,若直線l平行于雙曲線C的一條漸近線且經(jīng)過C的一個頂點,則雙曲線C的焦點到漸近線的距離為( 。
A.1B.2C.$\sqrt{5}$D.4

分析 根據(jù)題意,由雙曲線的方程分析可得其焦點位置以及漸近線方程,結(jié)合題意分析有$\frac{a}$=2,求出直線l與x軸交點坐標(biāo),即可得雙曲線C的一個頂點坐標(biāo),即a的值,計算可得b的值,又由雙曲線的焦點到漸近線的距離等于b,即可得答案.

解答 解:根據(jù)題意,雙曲線C的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),其焦點在x軸上,
其漸近線方程y=±$\frac{a}$x,
又由直線l平行于雙曲線C的一條漸近線,則有$\frac{a}$=2,
直線l:y=2x-2與x軸交點坐標(biāo)為(1,0),
即雙曲線C的一個頂點坐標(biāo)為(1,0),即a=1,
則b=2a=2,
故雙曲線C的焦點到漸近線的距離為2;
故選:B.

點評 本題考查雙曲線的幾何性質(zhì),關(guān)鍵注意“雙曲線的焦點到漸近線的距離”等于b.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校從高一年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(1)求圖中實數(shù)a的值;
(2)若該校高一年級共有學(xué)生640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于80分的人數(shù);
(3)若從樣本中數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,記這兩名學(xué)生成績在[90,100]內(nèi)的人數(shù)為X,求隨機(jī)變量X的分布列和期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點A是直角三角形ABC的直角頂點,且A(2a,2),B(-4,a),C(2a+2,2),則△ABC的外接圓的方程是( 。
A.x2+(y-3)2=5B.x2+(y+3)2=5C.(x-3)2+y2=5D.(x+3)2+y2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在數(shù){an}中,a1=1,且滿足an+1=3an
(1)證明數(shù)列{an}為等比數(shù)列,并求出an;
(2)數(shù)列{bn}滿足bn=log3an,求證{bn}為等差數(shù)列并求出{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.Sn等差數(shù)列{an}的前n項和,a1>0,當(dāng)且僅當(dāng)n=10時Sn最大,則$\frac{{S}_{12}}{{a}_{12}}$的取值范圍為(-54,-21).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=2cos22x-2,給出下列命題:
①?β∈R,f(x+β)為奇函數(shù);
②?α∈(0,$\frac{3π}{4}$),f(x)=f(x+2α)對x∈R恒成立;
③?x1,x2∈R,若|f(x1)-f(x2)|=2,則|x1-x2|的最小值為$\frac{π}{4}$;
④?x1,x2∈R,若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z).其中的真命題有( 。
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)$\frac{1}{1-i}$+$\frac{1}{1+i}$=( 。
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某人隨機(jī)播放甲、乙、丙、丁4首歌曲中的2首,則甲、乙2首歌曲至少有1首被播放的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校高三特長班的一次月考數(shù)學(xué)成績的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題:

(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.

查看答案和解析>>

同步練習(xí)冊答案