14.某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(1)求圖中實數(shù)a的值;
(2)若該校高一年級共有學生640人,試估計該校高一年級期中考試數(shù)學成績不低于80分的人數(shù);
(3)若從樣本中數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,記這兩名學生成績在[90,100]內(nèi)的人數(shù)為X,求隨機變量X的分布列和期望值.

分析 (1)由等比數(shù)列性質(zhì)及頻率分布直方圖,列出方程,能求出a.
(2)利用頻率分布直方圖能求出成績不低于80分的人數(shù).
(3)樣本中成績在[40,50)內(nèi)的人數(shù)為2,成績在[90,100]內(nèi)的人數(shù)為4,X的所有可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列和E(X).

解答 解:(1)∵頻率分布直方圖前三段的頻率成等比數(shù)列,
∴由頻率分布直方圖,得:(10b)2=0.05×0.20,解得b=0.010,
∴a=0.1-0.005-0.010-0.020-0.025-0.010=0.030.
(2)成績不低于80分的人數(shù)估計為:640×(0.025+0.010)×10=224.
(3)樣本中成績在[40,50)內(nèi)的人數(shù)為40×0.005×10=2,
成績在[90,100]內(nèi)的人數(shù)為40×0.010×10=4,
X的所有可能取值為0,1,2,
P(X=0)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{4}^{1}}{{C}_{4}^{2}}$=$\frac{8}{15}$,
P(X=2)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{2}{5}$,
∴X的分布列為:

 X 0 1 2
 P $\frac{1}{15}$ $\frac{8}{15}$ $\frac{2}{5}$
∴E(X)=$0×\frac{1}{15}+1×\frac{8}{15}+2×\frac{2}{5}$=$\frac{4}{3}$.

點評 本題考查頻率分布直方圖的應用,考查離散型隨機變量的分布列、數(shù)學期望的求法,考查推理論證能力、運算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.雙曲線${x^2}-\frac{y^2}{9}=1$的實軸長為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,過F1且與x軸垂直的直線交橢圓于A、B兩點,直線AF2與橢圓的另一個交點為C,若$\overrightarrow{A{F_2}}+2\overrightarrow{C{F_2}}$=0,則橢圓的離心率為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.“更相減損術”是出自《九章算術》的一種求最大公約數(shù)的算法,如框圖中若輸入的a、b分別為198、90,則輸出的i為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.將一條均勻木棍隨機折成兩段,則其中一段大于另一段三倍的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若復數(shù)z=$\frac{3-i}{i}$的共軛復數(shù)為$\overline{z}$,則$\overline{z}$在復平面內(nèi)的對應點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=xex-m有2個零點都大于-2,則實數(shù)m的取值范圍是(-$\frac{1}{e}$,-$\frac{2}{{e}^{2}}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知全集U={1,2,3,4},集合A={1,4},B={3,4},則∁U(A∪B)={2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),直線l:y=2x-2,若直線l平行于雙曲線C的一條漸近線且經(jīng)過C的一個頂點,則雙曲線C的焦點到漸近線的距離為(  )
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

同步練習冊答案