5.設(shè)z1、z2是方程z2+2z+3=0的兩根,則|z1-z2|=2$\sqrt{2}$.

分析 求出z,即可求出|z1-z2|.

解答 解:由題意,z=-1±$\sqrt{2}$i,
∴|z1-z2|=|2$\sqrt{2}$i|=2$\sqrt{2}$,
故答案為2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的運(yùn)算與球模,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)A(n)表示正整數(shù)n的個(gè)位數(shù),an=A(n2)-A(n),A為數(shù)列{an}的前202項(xiàng)和,函數(shù)f(x)=ex-e+1,若函數(shù)g(x)滿足f[g(x)-$\frac{Ax-1}{{A}^{x}}$]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項(xiàng)和為n+3-(2n+3)•($\frac{1}{2}$)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知橢圓:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<3),左右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l交橢圓于A、B兩點(diǎn),若|BF2|+|AF2|的最大值為10,則b的值是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=sin2(x-$\frac{π}{4}$)的圖象沿x軸向右平移m個(gè)單位(m>0),所得圖象關(guān)于y軸對(duì)稱,則m的最小值為( 。
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2($\frac{1+mx}{2x-1}$)-x(m為常數(shù))是奇函數(shù).
(1)判斷函數(shù)f(x)在x∈($\frac{1}{2}$,+∞)上的單調(diào)性,并用定義法證明你的結(jié)論;
(2)若對(duì)于區(qū)間[2,5]上的任意x值,使得不等式f(x)≤2x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的公差為d,d≠0,若{an}的前10項(xiàng)之和大于其前21項(xiàng)之和,則( 。
A.d<0B.d>0C.a16<0D.a16>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.由直線y=x+1上的點(diǎn)向圓C:x2+y2-6x+8=0引切線,則切線長的最小值為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.求二面角P-CD-B余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)平面直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合,x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為(t為參數(shù),t∈R).

(Ⅰ)求曲線C的標(biāo)準(zhǔn)方程和直線l的普通方程;

(Ⅱ)若點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的最大距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案