19.已知拋物線C:y2=2px(p>0)的準(zhǔn)線與雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的兩條漸近線分別交于A、B兩點(diǎn),若△AOB(O為坐標(biāo)原點(diǎn))的面積為4$\sqrt{2}$,且雙曲線E的離心率為$\sqrt{3}$,則拋物線C的準(zhǔn)線方程為(  )
A.$x=-\frac{1}{2}$B.x=-1C.$x=-\sqrt{3}$D.x=-2

分析 由離心率公式和a,b,c的關(guān)系得$\frac{a}$,即可得到雙曲線的漸近線方程;寫出拋物線的準(zhǔn)線方程,代入漸近線方程,可得A,B的坐標(biāo),得到AB的距離,由三角形的面積公式,計(jì)算即可得到p的值.

解答 解:由雙曲線的離心率為$\sqrt{3}$,可得$\frac{c}{a}=\sqrt{3}$,
∴$\frac{{a}^{2}+^{2}}{{a}^{2}}=3$,即$\frac{a}=\sqrt{2}$,
∴雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的兩條漸近線方程為y=±$\frac{a}$x=$±\sqrt{2}x$,
∵拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-$\frac{p}{2}$,
由$\left\{\begin{array}{l}{x=-\frac{p}{2}}\\{y=\sqrt{2}x}\end{array}\right.$得A(-$\frac{p}{2}$,-$\frac{\sqrt{2}}{2}p$),同理得B(-$\frac{p}{2},\frac{\sqrt{2}}{2}p$)
△AOB(O為坐標(biāo)原點(diǎn))的面積為$\frac{1}{2}×\frac{p}{2}×\sqrt{2}p$=4$\sqrt{2}$,解得p=4
∴準(zhǔn)線方程為x=-2.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的漸近線方程的求法,注意運(yùn)用離心率公式和a,b,c的關(guān)系,考查拋物線的方程和性質(zhì),以及三角形的面積公式的計(jì)算,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)$f(x)=ax-\frac{a}{x}-2lnx$.
(1)若f'(2)=0,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在定義域內(nèi)是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,左右頂點(diǎn)分別為A1,A2,P為橢圓上任意一點(diǎn)(不包括橢圓的頂點(diǎn)),則以線段PFi(i=1,2)為直徑的圓與以A1A2為直徑的圓的位置關(guān)系為內(nèi)切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U=R,集合$A=\left\{{x|y=\sqrt{1-x}}\right\}$,集合B={x|x2-2x<0},則A∩B等于(  )
A.[1,2)B.(1,2)C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.有2個(gè)男生和2個(gè)女生一起乘車去抗日戰(zhàn)爭紀(jì)念館參加志愿者服務(wù),他們依次上車,則第二個(gè)上車的是女生的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx-x2-bx(a,b∈R).
(1)若x=2是函數(shù)f(x)的一個(gè)極值點(diǎn),x0和1是f(x)的兩個(gè)零點(diǎn),且${x_0}∈({n,n+1})({n∈{N^*}})$,求n的值;
(2)若b=a-2,且x1,x2是f(x)的兩個(gè)極值點(diǎn),求證:當(dāng)|x1-x2|>1時(shí),|f(x1)-f(x2)|>3-4ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:
質(zhì)量指標(biāo)值mm<185185≤m<205m≥205
等級(jí)三等品二等品一等品
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(Ⅱ)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(III)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140}),則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在△ABC中,D是BC的中點(diǎn),E,F(xiàn) 是AD 上的兩個(gè)三等分點(diǎn).$\overrightarrow{BE}•\overrightarrow{CE}=2$,BC=2,則$\overrightarrow{BF}•\overrightarrow{CF}$=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從裝有紅球,白球,和黑球各2個(gè)的口袋內(nèi)一次取出2個(gè)球,則與事件“兩球都是白球”互斥而非對(duì)立的事件是以下事件中的①②.
①兩球都不是白球;          
②兩球恰有一白球;
③兩球至少有一個(gè)白球;      
④兩球至多一個(gè)白球.

查看答案和解析>>

同步練習(xí)冊(cè)答案