分析 (1)利用輔助角公式和二倍角基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,結合三角函數(shù)的圖象和性質,即可求實數(shù)a以及f(x)的取值最小值.
解答 解:函數(shù)$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$=$\frac{a}{2}$sin2x-$\frac{1}{2}$+$\frac{1}{2}$cos2x+$\frac{1}{2}$=$\sqrt{\frac{{a}^{2}+1}{4}}$sin(2x+θ),tanθ=$\frac{1}{a}$.
函數(shù)的對稱軸方程為2x+θ=$\frac{π}{2}$+kπ,(k∈Z)
對稱軸方程為$x=\frac{π}{6}$,即$\frac{π}{3}+θ$=$\frac{π}{2}$+kπ,
可得θ=$\frac{π}{6}$+kπ,
∵tanθ=$\frac{1}{a}$.
∴$\frac{1}{a}$=tan($\frac{π}{6}+kπ$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,
故a=$\sqrt{3}$
當2x+θ=$\frac{π}{2}+2kπ$時,函數(shù)f(x)取得最大值為1.
點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質的運用,屬于基礎題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $3\sqrt{2}$ | C. | $\sqrt{15}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 表示一個算法的起始和結束,程序框是 | |
B. | 表示一個算法輸入和輸出的信息,程序框是 | |
C. | 表示一個算法的起始和結束,程序框是 | |
D. | 表示一個算法輸入和輸出的信息,程序框是 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com