分析 依次令0≤2x<1,2x<0或2x≥1得出g(2x)的分段區(qū)間,再得出g(2x);令x=0,可求出m,求出f(x)+g(x)的解析式,根據(jù)2g(nx)=f(x)+g(x)得出關(guān)于n的不等式組,求出n即可得出m+n的值.
解答 解:令0≤2x<1得0≤x<$\frac{1}{2}$,
令2x<0或2x≥1得x<0或x$≥\frac{1}{2}$,
∴g(2x)=$\left\{\begin{array}{l}{1,0≤x<\frac{1}{2}}\\{0,x<0或x≥\frac{1}{2}}\end{array}\right.$.
令x=0得,mg(0)-g(0)=f(0),即m-1=1,
∴m=2,
∴2g(nx)=f(x)+g(x)=$\left\{\begin{array}{l}{2,0≤x<\frac{1}{2}}\\{0,x<0或x≥\frac{1}{2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\frac{n}{2}≤1}\\{\frac{n}{2}≥1}\end{array}\right.$,∴n=2.
∴m+n=4.
故答案為g(2x)=$\left\{\begin{array}{l}{1,0≤x<\frac{1}{2}}\\{0,x<0或x≥\frac{1}{2}}\end{array}\right.$;4.
點(diǎn)評 本題考查了分段函數(shù)的意義,函數(shù)值的計算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 5+4i | C. | -3 | D. | 3-4i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 200 | B. | 100 | C. | 80 | D. | 75 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com