2.各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意$n∈{N^*},6{S_n}={a_n}^2+3{a_n}+2$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記${b_n}=\frac{{2{S_n}}}{3n-1}•{2^n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)由已知條件推導(dǎo)出(an+an-1)(an-an-1-3)=0,從而得到數(shù)列{an}是首項(xiàng)為1,公差為3的等差數(shù)列,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由Sn=$\frac{3{n}^{2}-n}{2}$,bn=n•2n,由此利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn

解答 解:(1)由6Sn=an2+3an+2①
得6Sn-1=an-12+3an-1+2②
①-②得(an+an-1)(an-an-1-3)=0,
∵各項(xiàng)均為正數(shù)的數(shù)列{an}
∴an-an-1=3,
∴數(shù)列{an}是首項(xiàng)為1,公差為3的等差數(shù)列,
∴數(shù)列{an}的通項(xiàng)公式是an=3n-2
(2)Sn=$\frac{3{n}^{2}-n}{2}$,
∴${b_n}=\frac{{2{S_n}}}{3n-1}•{2^n}$=n•2n
∴Tn=1×21+2×22+…+n•2n,③
2Tn=1×22+2×23+…+n×2n+1,④
③-④,得-Tn=21+22+23+…+2n-n×2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n×2n+1=(1-n)2n+1-2,
∴Tn=(n-1)2n+1+2.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=($\frac{1}{2}$)x-2x
(1)若f(x)=$\frac{15}{4}$,求x的值;
(2)若不等式f(2m-mcosθ)+f(-1-cosθ)<f(0)對(duì)所有θ∈[0,$\frac{π}{2}$]都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)函數(shù),若f''(x)=0方程有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的“拐點(diǎn)”.已知函數(shù)f(x)=2x+sinx-cosx的拐點(diǎn)是M(x0,f(x0)),則直線OM的斜率為( 。
A.2B.$\frac{1}{2}$C.1D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.拋物線$y=-\frac{1}{4}{x^2}$的準(zhǔn)線方程是(  )
A.$y=\frac{1}{16}$B.y=1C.$y=-\frac{1}{16}$D.y=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,若E為AB的中點(diǎn),則點(diǎn)E到面ACD1的距離是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y=$\frac{1}{4}$x2的焦點(diǎn)坐標(biāo)為( 。
A.(-$\frac{1}{16}$,0)B.($\frac{1}{16}$,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{dn}的前n項(xiàng)和${S_n}={n^2}+n$,且d2,d4為等比數(shù)列數(shù)列{an}的第2、3項(xiàng).
(1)求{an}的通項(xiàng)方式;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求證:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+(2a-1)x(a∈R)$.
(Ⅰ)若f(x)在點(diǎn)(0,0)處的切線方程為y=x,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=-1時(shí),設(shè)f(x)在x1,x2(x1<x2)處取到極值,記M(x1,f(x1)).A(0,f(0)),B(1,f(1)),C(2,f(2)),判斷直線AM、BM、CM與函數(shù)f(x)的圖象各有幾個(gè)交點(diǎn)(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=sin(2x+φ)的圖象向右平移$\frac{π}{3}$個(gè)單位,與函數(shù)y=sin2x的圖象重合,φ∈(-π,π),則φ=( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.-$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案