16.已知雙曲線$\frac{x^2}{25}-\frac{y^2}{9}=1$上有一點(diǎn)M到左焦點(diǎn)F1的距離為18,則點(diǎn)M到右焦點(diǎn)F2的距離是( 。
A.8B.28C.12D.8或28

分析 求得雙曲線的a,b,c,運(yùn)用雙曲線的定義,可得||MF1|-|MF2||=2a=10,解方程可得所求值,檢驗(yàn)M在兩支的情況即可.

解答 解:雙曲線$\frac{x^2}{25}-\frac{y^2}{9}=1$的a=5,b=3,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{34}$,
由雙曲線的定義可得||MF1|-|MF2||=2a=10,
即為|18-|MF2||=10,解得|MF2|=8或28.
檢驗(yàn)若M在左支上,可得|MF1|≥c-a=$\sqrt{34}$-5,成立;
若M在右支上,可得|MF1|≥c+a=$\sqrt{34}$+5,成立.
故選:D.

點(diǎn)評 本題考查雙曲線的定義、方程和性質(zhì),主要是定義法的運(yùn)用,注意檢驗(yàn)M的位置,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三棱錐P-ABC中,AC⊥BC,AC=BC=2,PA=PB=BC=3,O是AB中點(diǎn),E是PB中點(diǎn).
(1)證明:平面PAB⊥平面ABC;
(2)求點(diǎn)B到平面OEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{4}=1$過點(diǎn)(2,-1),則雙曲線的離心率為(  )
A.$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知R為實(shí)數(shù)集,集合A={x|x2-2x≥0},B={x|x>1},則(∁RA)∩B=( 。
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-5≥0\\ x-3y+5≥0\\ kx-y-3k≤0\end{array}\right.$,若目標(biāo)函數(shù)z1=3x+y的最小值的7倍與z2=x+7y的最大值相等,則實(shí)數(shù)k的值為( 。
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{m}$=(-1,2),$\overrightarrow{n}$=(1,λ),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則$\overrightarrow{m}$+2$\overrightarrow{n}$與$\overrightarrow{m}$的夾角為( 。
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=2sin({ωx+φ})+1({ω>0,|φ|<\frac{π}{2}}),f(α)=-1,f(β)=1$,若|α-β|的最小值為$\frac{3π}{4}$,且f(x)的圖象關(guān)于點(diǎn)$({\frac{π}{4},1})$對稱,則函數(shù)f(x)的單調(diào)遞增區(qū)間是(  )
A.$[{-\frac{π}{2}+2kπ,π+2kπ}],k∈Z$B.$[{-\frac{π}{2}+3kπ,π+3kπ}],k∈Z$
C.$[{π+2kπ,\frac{5π}{2}+2kπ}],k∈Z$D.$[{π+3kπ,\frac{5π}{2}+3kπ}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC中,角A,B,C的對邊分別為a,b,c,若a=$\frac{\sqrt{6}}{2}$b,A=2B,則cosB 等于( 。
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{6}}{5}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.i為虛數(shù)單位,若(1+i)$\overline{z}$=(1-i)2,則|z|=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案