4.若(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$的值為( 。
A.2B.0C.-1D.-2

分析 分別令x=0,或x=$\frac{1}{2}$,即可求出答案.

解答 解:由(1-2x)2017=a0+a1x+…a2017x2017(x∈R),
令x=0,可得1=a0
令x=$\frac{1}{2}$,可得0=1+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$,
則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=-1,
故選:C

點評 本題考查了二項式定理的應(yīng)用、方程的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項和為Sn,2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)證明$\left\{{\frac{a_n}{2^n}+1}\right\}$為等比數(shù)列,并求數(shù)列{an}的通項;
(2)設(shè)bn=log3(an+2n),且Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+{\frac{1}{{{b_3}b}}_4}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,證明Tn<1.
(3)在(2)小問的條件下,若對任意的n∈N*,不等式bn(1+n)-λn(bn+2)-6<0恒成立,試求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某年某學校游園有一個游戲,規(guī)則如下:盒子中有4個白球3個紅球,每次從中取出一球,如果取出紅球不放回,取出白球游戲結(jié)束.取出紅球個數(shù)為X,獎品為Y支鉛筆,Y=3-X,發(fā)放獎品后,把球全放回盒子,輪到下一名游戲者.
(1)試求某甲同學取出紅球個數(shù)分布列;
(2 ) 甲、乙同學都進行了一次游戲,求甲比乙獲鉛筆數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=|x-2|-|x+3|
(1)求不等式f(x)<3的解集;
(2)若不等式f(x)<3+a對任意x∈R恒成立,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合M={-1,0,1},集合N={y|y=sinx,x∈M},則M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)f(x)在R上可導(dǎo),f(x)=x3+x2f′(1),則${∫}_{0}^{2}$f(x)dx=(  )
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某校為了解全校高中學生五一小長假參加實踐活動的情況,抽查了100名學生,統(tǒng)計他們假期參加實踐活動的時間,繪成的頻率分布直方圖如圖所示.
(1)求這100名學生中參加實踐活動時間在6~10小時內(nèi)的人數(shù);
(2)估計這100名學生參加實踐活動時間的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}\right.$.
(1)求上述不等式組表示的平面區(qū)域的面積;
(2)求z=2x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知直線l1:mx+2y+3=0與l2:x+(m+1)y-1=0.當m=-2或1時,l1∥l2,當m=-$\frac{2}{3}$時,l1⊥l2

查看答案和解析>>

同步練習冊答案