分析 (1)求出焦點(diǎn)F,設(shè)P(x,y)為橢圓C上任意一點(diǎn),利用已知條件列出方程,求出m,即可.
(2)設(shè)AB方程為x=ty-1,與橢圓聯(lián)立,求出三角形的面積的表達(dá)式,利用換元法以及函數(shù)的單調(diào)性求解最值.
解答 解:(1)F(1,0),設(shè)P(x,y)為橢圓C上任意一點(diǎn),
依題意有$\frac{{\sqrt{{{({x-1})}^2}+{y^2}}}}{{|{x-m}|}}=\frac{1}{2}$,
∴4(x-1)2+4y2=(x-m)2.將4y2=12-3x2代入,
并整理得(8-2m)x+m2-16=0.
由點(diǎn)P(x,y)為橢圓上任意一點(diǎn)知,方程(8-2m)x+m2-16=0對(duì)-2≤x≤2的x均成立.
∴8-2m=0,且m2-16=0,解得m=4.
∴直線(xiàn)l的方程為x=4.
(2)由題意可設(shè)AB方程為x=ty-1,
由$\left\{\begin{array}{l}x=ty-1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$得(3t2+4)y2-6ty-9=0,∴y1+y2=$\frac{6t}{3{t}^{2}+4}$,y1y2=-$\frac{9}{3{t}^{2}+4}$.
∴|y1-y2|=$\sqrt{({{y}_{1}+{y}_{2})}^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{\frac{36{t}^{2}}{(3{t}^{2}+4)^{2}}+\frac{36}{3{t}^{2}+4}}$=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$.
∴△ABF2面積S=$\frac{1}{2}$|F1F2||y1-y2|=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
令$s=\sqrt{{t^2}+1}≥1$,
則${S}_{△AB{F}_{2}}=\frac{12s}{3{s}^{2}+1}=\frac{12}{3s+\frac{1}{s}}$.當(dāng)s≥1時(shí),函數(shù)g(s)=3s+$\frac{1}{s}$是增函數(shù),可得${S}_{△AB{F}_{2}}≤3$.
點(diǎn)評(píng) 本題考查了焦點(diǎn)弦與三角形的周長(zhǎng)與面積最值問(wèn)題,注意運(yùn)用橢圓的定義和轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,3) | B. | (-1,1)∪(1,3) | C. | [-1,1)∪(1,3] | D. | [-1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com