1.下列命題說法正確的是( 。
A.若α>β,則sinα>sinβ
B.數(shù)列{an},{bn}為等比數(shù)列,則數(shù)列{an+bn}為等比數(shù)列
C.函數(shù)f(x),g(x)均為增函數(shù),則函數(shù)f(x)•g(x)為增函數(shù)
D.在△ABC中,若a>b,則sinA>sinB

分析 選項A、B、C都可以通過找出一個反例說明結(jié)論不正確,選項D可以利用正弦定理來進行證明.

解答 解:對于選項A,α=150°,β=60°時,$sinα=\frac{1}{2},sinβ=\frac{\sqrt{3}}{2}$,此時sinα<sinβ,故A不正確;
對于選項B,若an=2,bn=-2,則{an},{bn}均是公比為1的等比數(shù)列,此時an+bn=0,則{an+bn}不是等比數(shù)列,故B不正確;
對于選項C,若f(x)=x,g(x)=x+2均為增函數(shù),此時f(x)•g(x)=x2+2x在(-∞,-1)上單調(diào)遞減,故C不正確;
對于選項D,根據(jù)正弦定理,$\frac{a}{sinA}=\frac{sinB}=2R$(R為外接圓半徑),則a=2RsinA,b=2RsinB.因為a>b,所以2RsinA>2RsinB,即sinA>sinB,故D正確.
故選:D.

點評 本題以命題的真假判斷為載體,考查了特殊角的三角函數(shù)值,正弦定理,數(shù)列,函數(shù)的單調(diào)性等知識點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a=x,b=2,B=30°,若這個三角形有兩解,則x的取值范圍是(2,4 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.4人到A,B,C三個景點參觀,每個景點至少安排1人,每人只去一個景點,其中甲不去A景點,則不同的參觀方案有( 。
A.12種B.18種C.24種D.30種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{e^x}{x-ae}$的極值點為2e+1.(這里的 是自然對數(shù)的底)
(1)求實數(shù)a的值;
(2)若數(shù)列{an}滿足an=f(n),問:數(shù)列{an}是否存在最小項?若存在,求出該最小項;若不存在,請說明再由;
(3)求證:f(2e+1)•f(2e+2)•…•f(2e+n)>(n+1)e2ne

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期.
(2)若x∈[-$\frac{π}{2}$,0],求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)在定義域R上滿足f(-x)-f(x),當(dāng)x∈[0,2]時,f(x)=-x2+2x;當(dāng)x∈(2,+∞)時,f(x)=2x-4.
(1)求f(x)的解析式;
(2)若x≥0解關(guān)于x的不等式f(x+1)>f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.log43、log34、log${\;}_{\frac{4}{3}}$$\frac{3}{4}$的大小順序是(  )
A.log34<log43<log${\;}_{\frac{4}{3}}$$\frac{3}{4}$B.log34>log43>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$
C.log34>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log43D.log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log34>log43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,若AC=3,BC=4,AB=5,以AB為軸將三角形旋轉(zhuǎn)一周得到一幾何體,求該幾何體的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直三棱柱ABC-A1B1C1中,若BC⊥AC,$∠A=\frac{π}{3}$,AC=4,AA1=4,M為AA1的中點,P為BM的中點,Q在線段CA1上,A1Q=3QC.則異面直線PQ與AC所成角的正弦值為( 。
A.$\frac{{\sqrt{39}}}{13}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{13}}}{13}$

查看答案和解析>>

同步練習(xí)冊答案