1.已知f(x)是定義在R上的奇函數(shù),且周期為2,當(dāng)x∈(0,1]時(shí),f(x)=1-x,則函數(shù)f(x)在[0,2017]上的零點(diǎn)個(gè)數(shù)是( 。
A.1008B.1009C.2017D.2018

分析 根據(jù)函數(shù)零點(diǎn)存在定理和函數(shù)的奇偶性和周期性即可求出答案.

解答 解:當(dāng)f(x)=0時(shí),x=1,此時(shí)有一個(gè)零點(diǎn),
∵f(x)周期為2,
∴f(x+2)=f(x),
∴x=3,5,7,9…均是函數(shù)的零點(diǎn),
∵x∈[0,2017],
∴零點(diǎn)的個(gè)數(shù)為$\frac{1+2017}{2}$=1009,
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)的問(wèn)題,以及函數(shù)的周期性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)x,y∈R,則“x≥2且y≥2”是“x+y≥4”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)(1-i)(x+yi)=2,其中x,y是實(shí)數(shù),則x+yi的共軛復(fù)數(shù)在復(fù)平面對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”這個(gè)問(wèn)題用今天的白話敘述為:“有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這位女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于20尺,該女子所需的天數(shù)至少為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知i是虛數(shù)單位,則|$\frac{(-1+i)(1+i)}{{i}^{3}}$|=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.江湖傳說(shuō),蜀中唐門(mén)配制的天下第一奇毒“含笑半步癲”是由3種藏紅花,2種南海蛇毒和1種西域毒草順次添加煉制而成,其中藏紅花的添加順序不能相鄰,同時(shí)南海蛇毒的添加順序也不能相鄰,現(xiàn)要研究所有不同添加順序?qū)λ幮У挠绊,則總共要進(jìn)行48次試驗(yàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為4,2,則輸出v的值為( 。
A.66B.33C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.京劇是我國(guó)的國(guó)粹,是“國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)”,為紀(jì)念著名京劇表演藝術(shù)家、京劇藝術(shù)大師梅蘭芳先生,某市電視臺(tái)舉辦《我愛(ài)京劇》的比賽,并隨機(jī)抽取100位參與《我愛(ài)京劇》比賽節(jié)目的票友的年齡作為樣本進(jìn)行分析研究(全部票友的年齡都在[30,80]內(nèi)),樣本數(shù)據(jù)分組區(qū)間為[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如圖所示的頻率分布直方圖.
(Ⅰ)若抽取的這100位參與節(jié)目的票友的平均年齡為53,據(jù)此估計(jì)表中a,b的值(同一組中的數(shù)據(jù)用該組區(qū)間的終點(diǎn)值作代表);
(Ⅱ)在(Ⅰ)的條件下,若按分層抽樣的方式從中再抽取20人,參與有關(guān)京劇知識(shí)的問(wèn)答,分別求抽取的年齡在[60,70)和[70,80]的票友中人數(shù);
(Ⅲ)根據(jù)(Ⅱ)中抽取的人數(shù),從年齡在[60,80)的票友中任選2人,求這兩人年齡都在[60,70)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若a=1,b=$\sqrt{3}$,B=60°,則△ABC的面積為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案