12.若三角形中有一個角為60°,夾這個角的兩邊的邊長分別是6和2,則它的外接圓半徑等于$\frac{2\sqrt{21}}{3}$.

分析 利用余弦定理與正弦定理即可得出.

解答 解:設三角形的外接圓半徑為R.
設A=60°,由余弦定理可得:a2=62+22-2×6×2cos60°=28,解得a=2$\sqrt{7}$.
由正弦定理可得:2R=$\frac{2\sqrt{7}}{sin6{0}^{°}}$=$\frac{4\sqrt{21}}{3}$,
解得R=$\frac{2\sqrt{21}}{3}$.
故答案為:$\frac{2\sqrt{21}}{3}$.

點評 本題考查了余弦定理與正弦定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.函數(shù)f(x)=4x3+ax2+bx+5在(-∞,-1)和($\frac{3}{2}$,+∞)單調(diào)遞增,在(-1,$\frac{3}{2}$)單調(diào)遞減.
(1)求函數(shù)的解析式;
(2)求f(x)在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設集合S={1,2,3,…,n}(n≥5,n∈N*),集合A={a1,a2,a3}滿足a1<a2<a3且a3-a2≤2,A⊆S
(1)若n=6,求滿足條件的集合A的個數(shù);
(2)對任意的滿足條件的n及A,求集合A的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知M(4,0),N(1,0),曲線C上的任意一點P滿足:$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{PN}$|
(Ⅰ)求點P的軌跡方程;
(Ⅱ)過點N(1,0)的直線與曲線C交于A,B兩點,交y軸于H點,設$\overrightarrow{MN}$=λ1$\overrightarrow{AN}$,$\overrightarrow{HB}$=λ2$\overrightarrow{BN}$,試問λ12是否為定值?如果是定值,請求出這個定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=2ln(3x)+8x,則$\underset{lim}{△x→0}$$\frac{f(1-2△x)-f(1)}{△x}$的值為( 。
A.10B.-10C.-20D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{2}$求$cos(\frac{5}{6}π+α)-{sin^2}(-α+\frac{7π}{6})$的值.
(2)若cosα=$\frac{2}{3}$,α是第四象限角,求$\frac{sin(α-2π)+sin(-α-3π)cos(α-3π)}{cos(π-α)-cos(-π-α)cos(α-4π)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.過圓x2+y2=4外一點M(4,-1)引圓的兩條切線,則經(jīng)過兩切點的直線方程是( 。
A.4x-y-4=0B.4x+y-4=0C.4x+y+4=0D.4x-y+4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知圓的一般方程為x2+y2-2x+4y+3=0,則圓心C的坐標與半徑分別是(  )
A.(1,-2),r=2B.(1,-2),$r=\sqrt{2}$C.(-1,2),r=2D.(-1,2),$r=\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x)定義如表,數(shù)列{xn}滿足x0=5,且對任意的自然數(shù)均有xn+1=f(xn),則x2011=(  )
x12345
f(x)41352
A.1B.2C.4D.5

查看答案和解析>>

同步練習冊答案