A. | 4x-y-4=0 | B. | 4x+y-4=0 | C. | 4x+y+4=0 | D. | 4x-y+4=0 |
分析 設(shè)切點(diǎn)是P(x1,y1)、Q(x2,y2),則以P為切點(diǎn)的切線方程是:x1x+y1y=4,以Q為切點(diǎn)的切線方程是:x2x+y2y=4,由此能求出過兩切點(diǎn)P、Q的直線方程.
解答 解:設(shè)切點(diǎn)是P(x1,y1)、Q(x2,y2),
則以P為切點(diǎn)的切線方程是:x1x+y1y=4,
以Q為切點(diǎn)的切線方程是:x2x+y2y=4,
∵點(diǎn)M(4,-1)在兩條切線上,則4x1-y1=4,4x2-y2=4
∴點(diǎn)P、Q的坐標(biāo)滿足方程:4x-y=4
∴過兩切點(diǎn)P、Q的直線方程是:4x-y-4=0.
故選A.
點(diǎn)評(píng) 本題考查經(jīng)過兩個(gè)切點(diǎn)的直線方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的切線方程的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-5) | B. | (-2,0) | C. | (-1,3) | D. | (0,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$•f($\frac{π}{4}$)>$\sqrt{2}$•f($\frac{π}{3}$) | B. | f(1)>2•f($\frac{π}{6}$)•sin1 | C. | $\sqrt{2}$•f($\frac{π}{6}$)>f($\frac{π}{4}$) | D. | $\sqrt{3}$•f($\frac{π}{6}$)>f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={x^{\frac{1}{2}}}$ | B. | y=x-1 | C. | y=x2 | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com