10.已知拋物線C:y=ax2(a>0)的焦點(diǎn)為F,點(diǎn)P(4,$\frac{7}{2}$),且拋物線C恰好經(jīng)過(guò)線段PF的中點(diǎn).
(I)求a的值;
(Ⅱ)過(guò)點(diǎn)P的直線l交拋物線C于A,B兩點(diǎn),設(shè)直線FA,F(xiàn)P,F(xiàn)B的斜率分別為k1,k2,k3,則是否有等式k1+k3=$\frac{8}{9}$k2成立?若能成立,求出直線l的方程;若不能成立,請(qǐng)說(shuō)明理由.

分析 (I)求得拋物線的焦點(diǎn)F,利用中點(diǎn)坐標(biāo)公式,求得中點(diǎn)坐標(biāo),代入拋物線方程,即可求得a的值;
(Ⅱ)設(shè)出l方程與拋物線方程聯(lián)立,利用韋達(dá)定理,及k1+k3=$\frac{8}{9}$k2,可得方程,即可求得k的值,即可求得直線l的方程.

解答 解:(I)拋物線C:x2=$\frac{1}{a}$y,焦點(diǎn)F(0,$\frac{1}{4a}$),P(4,$\frac{7}{2}$),
則PF的中點(diǎn)E(2,$\frac{7}{4}$+$\frac{1}{8a}$),則4a=$\frac{7}{4}$+$\frac{1}{8a}$,整理得:32a2-14a-1=0,
解得:a=$\frac{1}{2}$,a=-$\frac{1}{16}$,由a>0,則a=$\frac{1}{2}$,
∴a的值$\frac{1}{2}$;
(Ⅱ)拋物線的焦點(diǎn)F(0,$\frac{1}{2}$)
設(shè)直線AB的方程:y-$\frac{7}{2}$=k(x-4),(k≠0)A(x1,y1)、B(x2,y2),
則$\left\{\begin{array}{l}{y-\frac{7}{2}=k(x-4)}\\{{x}^{2}=2y}\end{array}\right.$,整理得:x2-2kx+8k-7=0,△=4k2-4(8k-7)=k2-8k+7>0,
解得:k<1或k>7,①
x1+x2=2k,x1x2=8k-7,
則k1=$\frac{{y}_{1}-\frac{1}{2}}{{x}_{1}}$=$\frac{k({x}_{1}-4)+\frac{7}{2}-\frac{1}{2}}{{x}_{1}}$=$\frac{k({x}_{1}-4)+3}{{x}_{1}}$,k3=$\frac{{y}_{2}-\frac{1}{2}}{{x}_{2}}$=$\frac{k({x}_{2}-4)+3}{{x}_{2}}$,k2=$\frac{\frac{7}{2}-\frac{1}{2}}{4-0}$=$\frac{3}{4}$,
∴k1+k3=$\frac{k({x}_{1}-4)+3}{{x}_{1}}$+$\frac{k({x}_{2}-4)+3}{{x}_{2}}$=$\frac{2{x}_{1}{x}_{2}+(3-4k)({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=$\frac{8{k}^{2}-8k}{8k-7}$,
由k1+k3=$\frac{8}{9}$k2=$\frac{2}{3}$,則$\frac{8{k}^{2}-8k}{8k-7}$=$\frac{2}{3}$,整理得:12k2-20k+7=0,
解得:k=$\frac{1}{2}$,或k=$\frac{7}{6}$,
由①可知:k=$\frac{1}{2}$,整理得:2y-x-3=0,
∴直線l的方程2y-x-3=0.

點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,矩形ABCD的邊AB=8,BC=4,以CD為直徑在矩形的外部作一半圓,圓心為O,過(guò)CD上一點(diǎn)N作AB的垂線交半圓弧于P,交AB于Q,M是曲線PDA上一動(dòng)點(diǎn).
(1)設(shè)∠POC=30°,若PM=QM,求△PMQ的面積;
(2)求△PMQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=-2+i(i為虛數(shù)單位),則復(fù)數(shù)$z+\frac{1}{z}$的虛部為( 。
A.$\frac{4}{5}$B.$\frac{4}{5}i$C.$\frac{6}{5}$D.$\frac{6}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)隨機(jī)變量X~B(2,p),隨機(jī)變量Y~B(3,p),若P(X≥1)=$\frac{5}{9}$,則D(3Y+1)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)α1=2,α2=-3.2,則α1,α2分別是第二象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“牟合方蓋”是我國(guó)古代數(shù)學(xué)家劉微在研究球的體積的過(guò)程中構(gòu)造的一個(gè)和諧優(yōu)美的幾何體,它由完全相同的四個(gè)曲面構(gòu)成,相對(duì)的兩個(gè)曲面在同一圓柱的側(cè)面上,好似兩個(gè)扣合(牟合)在一起的方形傘(方蓋).如圖,正邊形ABCD是為體現(xiàn)其直觀性所作的輔助線,若該幾何體的正視圖與側(cè)視圖都是半徑為r的圓,根據(jù)祖暅原理,可求得該幾何體的體積為( 。
A.$\frac{8}{3}{r^3}$B.$\frac{8}{3}π{r^3}$C.$\frac{16}{3}{r^3}$D.$\frac{16}{3}π{r^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)向量$\overrightarrow a$,$\overrightarrow b$不平行,向量$λ\overrightarrow a+\overrightarrow b$與$\overrightarrow a+2\overrightarrow b$平行,則實(shí)數(shù)λ等于( 。
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在等差數(shù)列{an}中,已知a2+a5=4,an=33,a1=$\frac{1}{3}$,則n是( 。
A.48B.49C.50D.51

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在等差數(shù)列{an}中,若a1,a3,a4成等比數(shù)列,則該等比數(shù)列的公比為(  )
A.$\frac{1}{2}$B.1C.1或$\frac{1}{2}$D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案