15.已知f(x)=xlnx.
(1)求$g(x)=\frac{f(x)+2}{x}$的單調(diào)區(qū)間;
(2)若不等式k+2x-e≤f(x)恒成立,求k的取值范圍.

分析 (1)求出g(x)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問題轉(zhuǎn)化為k≤xlnx-2x+e恒成立,令h(x)=xlnx-2x+e,(x>0),求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)∵f(x)=xlnx,
∴g(x)=$\frac{xlnx+2}{x}$=lnx+$\frac{2}{x}$,
則g′(x)=$\frac{1}{x}$-$\frac{2}{{x}^{2}}$=$\frac{x-2}{{x}^{2}}$,
令g′(x)>0,解得:x>2,
令g′(x)<0,解得:0<x<2,
故g(x)在(0,2)遞減,在(2,+∞)遞增,
(2)若不等式k+2x-e≤f(x)恒成立,
則k≤xlnx-2x+e恒成立,
令h(x)=xlnx-2x+e,(x>0),
則h′(x)=lnx-1,
令h′(x)>0,解得:x>e,
令h′(x)<0,解得:0<x<e,
故h(x)在(0,e)遞減,在(e,+∞)遞增,
故h(x)min=h(e)=0,
故k≤0.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=log(2x-1)$\sqrt{3x-2}$的定義域是(  )
A.($\frac{2}{3}$,+∞)B.($\frac{2}{3}$,1)∪(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\frac{x+1}{{e}^{x}-1}$+x(x∈(0,+∞),且f(x)在x0處取得最小值,則以下各式正確的序號為( 。
①f(x0)<x0+1              ②f(x0)=x0+1             ③f(x0)>x0+1               ④f(x0)<3                    ⑤f(x0)>3.
A.①④B.②④C.②⑤D.③⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖所示的幾何體,則該幾何體的俯視圖是選項圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}(a-2)x-1,x≤1\\{log}_{a}^{x},x>1\end{array}\right.$. 若f(x)在R上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍是( 。
A.(2,3]B.(2,3)C.(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列四個命題中,正確的是(  )
A.奇函數(shù)的圖象一定過原點B.y=x2+1(-4<x≤4)是偶函數(shù)
C.y=|x+1|-|x-1|是奇函數(shù)D.y=x+1是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列抽樣實驗中,適合用抽簽法的是(  )
A.從某工廠生產(chǎn)的3000件產(chǎn)品中抽取600件進行質(zhì)量檢驗
B.從某工廠生產(chǎn)的兩箱(每箱15件)產(chǎn)品中抽取6件進行質(zhì)量檢驗
C.從甲、乙兩廠生產(chǎn)的兩箱(每箱15件)產(chǎn)品中抽取6件進行質(zhì)量檢驗
D.從某廠生產(chǎn)的3000件產(chǎn)品中抽取10件進行質(zhì)量檢驗

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an} 的前n項和${S_n}=3{n^2}+8n$,{bn}是等差數(shù)列,且an=bn+bn+1;
(1)求數(shù)列{bn}的通項公式;
(2)求${c_n}=\frac{{3{a_n}}}{{{b_n}-11}}$的最大項的值,并指出是第幾項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設點M(x0,2-x0),設在圓O:x2+y2=1上存在點N,使得∠OMN=30°,則實數(shù)x0的取值范圍為[0,2].

查看答案和解析>>

同步練習冊答案