(1)用輾轉(zhuǎn)相除法求出372和684的最大公約數(shù),然后用更相減損術(shù)驗(yàn)證.
(2)用秦九韶算法求多項(xiàng)式f(x)=x6-12x5+60x4-160x3+240x2-192x+64當(dāng)x=2時(shí)的值.
考點(diǎn):秦九韶算法,排序問(wèn)題與算法的多樣性
專(zhuān)題:計(jì)算題,算法和程序框圖
分析:(1)用較大的數(shù)字除以較小的數(shù)字,得到商和余數(shù),然后再用上一式中的除數(shù)和得到的余數(shù)中較大的除以較小的,以此類(lèi)推,當(dāng)整除時(shí),就得到要求的最大公約數(shù);更相減損術(shù):用較大的數(shù)字減去較小的數(shù)字,得到差,仍用差和減數(shù)中較大的數(shù)字減去較小的數(shù)字,這樣依次做下去,等做到減數(shù)和差相等時(shí),得到結(jié)果.
(2)將f(x)改寫(xiě)為f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64,由內(nèi)向外依次計(jì)算一次多項(xiàng)式當(dāng)x=2時(shí)的值,即可得出結(jié)論.
解答: 解:(1)∵684=1×372+312
372=1×312+60
312=5×60+12
60=5×12
∴(372,684)=12
檢驗(yàn):684-372=312
372-312=60
312-60=252
252-60=192
192-60=132
132-60=72
72-60=12
60-12=48
48-12=36
36-12=24
24-12=12
經(jīng)檢驗(yàn):(372,684)=12;
(2)將f(x)改寫(xiě)為f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64
由內(nèi)向外依次計(jì)算一次多項(xiàng)式當(dāng)x=2時(shí)的值,
v0=1,
v1=1×2-12=-10,
v2=-10×2+60=40,
v3=40×2-160=-80,
v4=-80×2+240=80,
v5=80×2-192=-32,
v6=-32×2+64=0.
∴f(2)=0,即x=2時(shí),原多項(xiàng)式的值為0.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是輾轉(zhuǎn)相除法和更相減損術(shù),考查秦九韶算法,熟練掌握輾轉(zhuǎn)相除法和更相減損術(shù)求最大公約數(shù)的方法和步驟是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若θ是任意實(shí)數(shù),則方程x2+4y2cosθ=1所表示的曲線一定不是(  )
A、圓B、雙曲線C、直線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是拋物線y2=6x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)M(0,2)的距離與點(diǎn)P到該拋物線的準(zhǔn)線的距離之和的最小值為(  )
A、2
B、3
C、
5
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=Asin(ωx+ϕ)(A>0,ω>0,|φ|<
π
2
)
一段圖象如圖所示.
(1)分別求出A,ω,ϕ并確定函數(shù)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)并指出函數(shù)y=Asin(ωx+ϕ)的圖象是由函數(shù)y=sinx的圖象怎樣變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l與直線x-3y+10=0,2x+y-8=0分別交于點(diǎn)M,N,若MN的中點(diǎn)是(0,1),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asin(2x-
π
3
)+b(a>0)
(1)寫(xiě)出函數(shù)的單調(diào)遞減區(qū)間;
(2)設(shè)x∈[0,
π
2
],f(x)的最小值是-2,最大值是
3
,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P(2,1)是直線夾在兩坐標(biāo)軸之間的線段的中點(diǎn),則此直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)總體分為甲、乙兩層,用分層抽樣方法從總體中抽取一個(gè)容量為20的樣本.已知乙層中每個(gè)個(gè)體被抽到的概率都為
1
9
,則總體中的個(gè)體數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x是實(shí)數(shù),且滿足等式
x
2
+
1
2x
=cosθ
,則實(shí)數(shù)θ等于(以下各式中k∈Z)( 。
A、2kπ
B、(2k+1)π
C、kπ
D、kπ+
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案