1.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a=2}|,|{\overrightarrow b}|=1$,$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,則$|{\overrightarrow a+2\overrightarrow b}|$=2.

分析 由條件進(jìn)行數(shù)量積的運(yùn)算便可求出$(\overrightarrow{a}+2\overrightarrow)^{2}$的值,從而得出$|\overrightarrow{a}+2\overrightarrow|$的值.

解答 解:根據(jù)條件,
$(\overrightarrow{a}+2\overrightarrow)^{2}$
=${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}$
=$4+4×2×1×(-\frac{1}{2})+4$
=4;
∴$|\overrightarrow{a}+2\overrightarrow|=2$.
故答案為:2.

點(diǎn)評(píng) 考查向量數(shù)量積的運(yùn)算及計(jì)算公式,要求$|\overrightarrow{a}+2\overrightarrow|$而求$(\overrightarrow{a}+2\overrightarrow)^{2}$的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若cosB=$\frac{1}{4}$,b=2,sinC=2sinA,則△ABC的面積為( 。
A.$\sqrt{15}$B.$\frac{\sqrt{15}}{2}$C.$\frac{\sqrt{15}}{6}$D.$\frac{\sqrt{15}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.寫出與下列各角終邊相同的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來:
(1)60°;
(2)-21°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對(duì)任意實(shí)數(shù)a,b,c,d,定義符號(hào)$(\begin{array}{l}{a}&\\{c}&7hub3ps\end{array})$=$\left\{\begin{array}{l}{\sqrt{ad-bc}(ad≥bc)}\\{\frac{1}{2}\sqrt{bc-ad}(ad<bc)}\end{array}\right.$,已知函數(shù)f(x)=$(\begin{array}{l}{x}&{4}\\{1}&{x}\end{array})$,直線l:kx-y+3-2k=0,若直線l與函數(shù)f(x)的圖象有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-1,$\frac{2}{3}$)∪($\frac{3}{4}$,1)B.(-1,$\frac{17}{24}$)C.(-1,$\frac{17}{24}$)∪($\frac{3}{4}$,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.與圓x2+(y-2)2=2相切,且在兩坐標(biāo)軸上的截距相等的直線方程為y=±x或y=-x+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知關(guān)于x的方程${({\frac{1}{2}})^x}-{x^{\frac{1}{3}}}=0$,那么在下列區(qū)間中含有方程的根的是( 。
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}前n項(xiàng)和Sn,且,令Sn=2an-2bn=log2an
(I)試求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${c_n}=\frac{b_n}{a_n}$,求證數(shù)列{cn}的前n項(xiàng)和Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知中心在坐標(biāo)原點(diǎn)的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F (2,0)為其右焦點(diǎn).
(1)求橢圓C的方程和離心率e;
(2)若平行于OA的直線l與橢圓有公共點(diǎn),求直線l在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an},a1=2,an=2an-1+2n(n≥2)
(I)求證數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列;
(II)求數(shù)列{an}的前n項(xiàng)和Sn;
(III)若bn=$\frac{2n-1}{{a}_{n}}$,求證數(shù)列{bn}為遞減數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案