A. | $[-2,\frac{3}{4}]$ | B. | $(-∞,-\frac{3}{4}]$ | C. | $[-\frac{3}{4},0]$ | D. | $[-\frac{4}{3},1]$ |
分析 根據(jù)f(x)為偶函數(shù)便可得到f(|x+t|)≥2f(|x|),從而得到|x+t|≥2|x|,兩邊平方便有(x+t)2≥4x2,經(jīng)整理便可得到3x2-2tx-t2≤0在[t,t+1]上恒成立,這樣只需3(t+1)2-2t(t+1)-t2≤0,解該不等式即可得出實(shí)數(shù)t的取值范圍.
解答 解:根據(jù)條件得:f(|x+t|)≥2f(|x|);
∴|x+t|≥2|x|;
∴(x+t)2≥4x2;
整理得,3x2-2tx-t2≤0在[t,t+1]上恒成立;
設(shè)g(x)=3x2-2tx-t2,g(t)=0;
∴g(t+1)=3(t+1)2-2t(t+1)-t2≤0;
解得t≤-$\frac{3}{4}$;
故選:B.
點(diǎn)評(píng) 考查偶函數(shù)的定義,y=x的單調(diào)性,不等式的性質(zhì),并需熟悉二次函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${a_n}={10^n}-8$ | B. | ${a_n}=\frac{{{{10}^n}-1}}{9}$ | C. | ${a_n}={2^n}-1$ | D. | ${a_n}=\frac{{2({{{10}^n}-1})}}{9}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com