16.某校開(kāi)設(shè)A類選修課4門,B類選修課2門,每位同學(xué)需從兩類選修課中共選4門,若要求至少選一門B類課程,則不同的選法共有14種.(用數(shù)字作答)

分析 根據(jù)題意,分2種情況討論:①、選擇1門B類課程,需要選擇A類課程3門,②、選擇2門B類課程,需要選擇A類課程2門,由分步計(jì)數(shù)原理計(jì)算每種情況的選法數(shù)目,進(jìn)而由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2種情況討論:
①、選擇1門B類課程,需要選擇A類課程3門,
則B類課程有C21=2種選法,A類課程有C43=4種選法,
此時(shí)有2×4=8種選擇方法;
②、選擇2門B類課程,需要選擇A類課程2門,
則B類課程有C22=1種選法,A類課程有C42=6種選法,
此時(shí)有1×6=6種選擇方法;
則一共有8+6=14種不同的選法;
故答案為:14.

點(diǎn)評(píng) 本題考查排列、組合的實(shí)際應(yīng)用,注意“至少選一門B類課程”這一條件,據(jù)此進(jìn)行分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某班開(kāi)展一次智力競(jìng)賽活動(dòng),共a,b,c三個(gè)問(wèn)題,其中題a滿分是20分,題b,c滿分都是25分.每道題或者得滿分,或者得0分.活動(dòng)結(jié)果顯示,全班同學(xué)每人至少答對(duì)一道題,有1名同學(xué)答對(duì)全部三道題,有15名同學(xué)答對(duì)其中兩道題.答對(duì)題a與題b的人數(shù)之和為29,答對(duì)題a與題c的人數(shù)之和為25,答對(duì)題b與題c的人數(shù)之和為20.則該班同學(xué)中只答對(duì)一道題的人數(shù)是4;該班的平均成績(jī)是42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從含有質(zhì)地均勻且大小相同的2個(gè)紅球、n個(gè)白球的口袋中隨機(jī)取出一球,若取到紅球的概率是$\frac{2}{5}$,則取得白球的概率等于( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\sqrt{x-2}$+lg(5-x)的定義域是[2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)g(x)對(duì)任意x∈R,有g(shù)(x)=f(x+$\frac{π}{6}$),求函數(shù)g(x)在[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)=2g(x)+$\frac{x-4}{{x}^{2}+1}$,則下列結(jié)論中正確的序號(hào)是①④
①f($\frac{1}{x}$)=f(x);
②f(x)在($\frac{1}{2}$,+∞)上單調(diào)遞減;
③g(x)在(0,+∞)上單調(diào)遞增;
④若f($\frac{1}{{x}^{2}+1}$)+f(4x-4x2-2)≥0,則x∈(-∞,$\frac{1}{3}$]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,∠A=$\frac{π}{3}$,O為平面內(nèi)一點(diǎn).且|$\overrightarrow{OA}|=|\overrightarrow{OB}|=|\overrightarrow{OC}$|,M為劣弧$\widehat{BC}$上一動(dòng)點(diǎn),且$\overrightarrow{OM}=p\overrightarrow{OB}+q\overrightarrow{OC}$.則p+q的取值范圍為[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在數(shù)列{an}中,設(shè)f(n)=an,且f(n)滿足f(n+1)-2f(n)=2n(n∈N*),且a1=1.
(1)設(shè)bn=$\frac{{a}_{n}}{{2}^{n-1}}$,證明數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{3an-1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$•sin(cosx)的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案