18.已知平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+3cosφ}\\{y=-1+3sinφ}\end{array}\right.$(φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)求曲線C1的極坐標(biāo)方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)若直線θ=$\frac{π}{6}$(ρ∈R)與曲線C1交于P,Q兩點(diǎn),求|PQ|的長(zhǎng)度.

分析 (I)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+3cosφ}\\{y=-1+3sinφ}\end{array}\right.$(φ為參數(shù)),利用平方關(guān)系消去φ可得普通方程,展開利用互化公式可得極坐標(biāo)方程.曲線C2的極坐標(biāo)方程為ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐標(biāo)方程.
(II)把直線θ=$\frac{π}{6}$(ρ∈R)代入${ρ}^{2}-2\sqrt{3}$ρcosθ+2ρsinθ-5=0,整理可得:ρ2-2ρ-5=0,利用|PQ|=|ρ12|=$\sqrt{({ρ}_{1}+{ρ}_{2})^{2}-4{ρ}_{1}{ρ}_{2}}$即可得出.

解答 解:(I)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+3cosφ}\\{y=-1+3sinφ}\end{array}\right.$(φ為參數(shù)),利用平方關(guān)系消去φ可得:$(x-\sqrt{3})^{2}$+(y+1)2=9,展開為:x2+y2-2$\sqrt{3}$x+2y-5=0,可得極坐標(biāo)方程:${ρ}^{2}-2\sqrt{3}$ρcosθ+2ρsinθ-5=0.
曲線C2的極坐標(biāo)方程為ρ=2cosθ,即ρ2=2ρcosθ,可得直角坐標(biāo)方程:x2+y2=2x.
(II)把直線θ=$\frac{π}{6}$(ρ∈R)代入${ρ}^{2}-2\sqrt{3}$ρcosθ+2ρsinθ-5=0,
整理可得:ρ2-2ρ-5=0,
∴ρ12=2,ρ1•ρ2=-5,
∴|PQ|=|ρ12|=$\sqrt{({ρ}_{1}+{ρ}_{2})^{2}-4{ρ}_{1}{ρ}_{2}}$=$\sqrt{{2}^{2}-4×(-5)}$=2$\sqrt{6}$.

點(diǎn)評(píng) 本題考查了直角坐標(biāo)方程化為極坐標(biāo)方程及其應(yīng)用、參數(shù)方程化為普通方程、弦長(zhǎng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=λ+(n-1)•2n,又?jǐn)?shù)列{bn}滿足:an•bn=n.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)當(dāng)λ為何值時(shí),數(shù)列{bn}是等比數(shù)列?并證此時(shí)數(shù)列{bn}的前n項(xiàng)和Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=sinx+cosx,x∈[0,$\frac{π}{4}$],則y=f(x)值域?yàn)椋ā 。?table class="qanwser">A.[-$\sqrt{2}$,$\sqrt{2}$]B.[1,$\sqrt{2}$]C.[-1,$\sqrt{2}$]D.[0,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,船甲以每小時(shí)30公里的速度向正東航行,船甲在A處看到另一船乙在北偏東60°的方向上的B處,且$AB=30\sqrt{3}$公里,正以每小時(shí)$5\sqrt{3}$公里的速度向南偏東60°的方向航行,行駛2小時(shí)后,甲、乙兩船分別到達(dá)C、D處,則CD等于$10\sqrt{3}$公里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),曲線C1上點(diǎn)P的極角為$\frac{π}{4}$,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則其體積為(  )
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{π}{6}$C.$\frac{{\sqrt{3}π}}{6}$D.$\frac{{\sqrt{3}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某企業(yè)的4名職工參加職業(yè)技能考核,每名職工均可從4個(gè)備選考核項(xiàng)目中任意抽取一個(gè)參加考核,則恰有一個(gè)項(xiàng)目未被抽中的概率是$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了調(diào)查每天人們使用手機(jī)的時(shí)間,我校某課外興趣小組在天府廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩手機(jī)超過6小時(shí)的用戶列為“手機(jī)控”,否則稱其為“非手機(jī)控”,調(diào)查結(jié)果如下:
手機(jī)控非手機(jī)控合計(jì)
男性262450
女性302050
合計(jì)5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“手機(jī)控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取5人中“手機(jī)控”和“非手機(jī)控”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人,記這3人中“手機(jī)控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.456[0.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,則該幾何體的表面積為$10+2\sqrt{5}+6\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案