3.某幾何體的三視圖如圖所示,則其體積為( 。
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{π}{6}$C.$\frac{{\sqrt{3}π}}{6}$D.$\frac{{\sqrt{3}π}}{3}$

分析 根據(jù)已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的半圓錐,代入錐體體積公式,可得答案.

解答 解:根據(jù)已知中的三視圖,可得該幾何體是一個(gè)以俯視圖為底面的半圓錐,
其底面面積S=$\frac{1}{2}$π,
高h(yuǎn)=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
故體積V=$\frac{1}{3}Sh$=$\frac{{\sqrt{3}π}}{6}$,
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是半圓錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某高校在2016年的自主招生考試成績中隨機(jī)抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時(shí)規(guī)定成績?cè)?5分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格.
(1)求出第4組的頻率;
(2)根據(jù)樣本頻率分布直方圖估計(jì)樣本的中位數(shù);
(3)如果從“優(yōu)秀”和“良好”的學(xué)生中分別選出3人與2人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=ln|1-x|的圖象大致形狀是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=m+t}\\{y=t}\end{array}}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為2ρ22cos2θ=12.若曲線C的左焦點(diǎn)F在直線l上,且直線l與曲線C交于A,B兩點(diǎn).
(1)求m的值并寫出曲線C的直角坐標(biāo)方程;
(2)求$\frac{{|{FA}|}}{{|{FB}|}}+\frac{{|{FB}|}}{{|{FA}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+3cosφ}\\{y=-1+3sinφ}\end{array}\right.$(φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)求曲線C1的極坐標(biāo)方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)若直線θ=$\frac{π}{6}$(ρ∈R)與曲線C1交于P,Q兩點(diǎn),求|PQ|的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知-2,a1,a2,-8成等差數(shù)列,-2,b1,b2,b3,-8成等比數(shù)列,則$\frac{{a}_{2}-{a}_{1}}{_{2}}$等于( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合$M=\left\{{x\left|{\frac{x-5}{x+1}≤0}\right.}\right\}$,N={-3,-1,1,3,5},則M∩N=( 。
A.{-3,-1,1,3,5}B.{-1,1,3,5}C.{1,3,5}D.{-3,-1,1,3,}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示三棱柱ABC-A1B1C1中,AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,AC⊥CD.
(Ⅰ)若AA1=AC,求證:AC1⊥平面A1B1CD;
(Ⅱ)若A1D與BB1所成角的余弦值為$\frac{\sqrt{21}}{7}$,求二面角C-A1D-C1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案