一質點運動方程S(t)=asint+bcost(a>0),若速度v(t)最大值為
6
,且對任意的t0∈R,在t=t0與t=
π
2
-t0時速度相同,求a,b的值.
考點:兩角和與差的正弦函數(shù)
專題:導數(shù)的概念及應用,三角函數(shù)的求值
分析:由v(t)=S′(t)=acost-bsint=
a2+b2
sin(t+φ),其中,tanφ=-
a
b
可得,∴a2+b2=6,從而由于在t=t0與t=
π
2
-t0時速度相同,可得(a+b)(cost0-sint0)=0,故得a+b=0,從而解得a=
3
,b=-
3
解答: 解:v(t)=S′(t)=acost-bsint=
a2+b2
sin(t+φ),其中,tanφ=-
a
b

∵v(t)的最大值為
6
,∴a2+b2=6
又∵在t=t0與t=
π
2
-t0時速度相同
∴(a+b)(cost0-sint0)=0且對任意的t0∈R,且a>0
∴a+b=0
∴聯(lián)立可解得:a=
3
,b=-
3
點評:本題主要考察兩角和與差的正弦函數(shù)公式的應用,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=cos(
π
4
-x)的單調遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:tan2α-sin2α=tan2α•sin2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
≤φ≤
π
2
)的圖象如圖所示,則f(1)的值為( 。
A、
2
B、1+
2
C、2+
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
2x-1
+
1
2
)•x2
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正項等比數(shù)列{an}中3a1
1
2
a3,2a2成等差數(shù)列,則
a2013+a2014
a2011+a2012
等于( 。
A、3或-1B、9或1C、1D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(
mx
x+1
+n)的圖象關于原點對稱(m、n∈R,m>0),求m,n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=2,AD=
3
,P是AB的中點,該矩形有一內(nèi)接Rt△PQR,P為直角頂點,Q、R分別落在線段BC和線段AD上,記Rt△PQR的面積為S. 
(Ⅰ)設∠BPQ為α,求S=f(α)及f(α)的最大值;
(Ⅱ)設BQ=x,求S=g(x)及g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,小明利用有一個銳角是30°的三角板測量一棵樹的高度,已知他與樹之間的水平距離BE為5m,AB為1.5m(即小明的眼睛距地面的距離),那么這棵樹高是( 。
A、(
5
3
3
+
3
2
)m
B、(5
3
+
3
2
)m
C、
5
3
3
m
D、4m

查看答案和解析>>

同步練習冊答案