7.若同時(shí)擲兩顆均勻的骰子,則所得點(diǎn)數(shù)之和大于4的概率等于$\frac{5}{6}$.

分析 同時(shí)擲兩顆均勻的骰子,基本事件總數(shù)n=6×6=36,所得點(diǎn)數(shù)之和大于4的對(duì)立事件是所得點(diǎn)數(shù)之和不大于4,由此利用對(duì)立事件概率計(jì)算公式和列舉法能求出所得點(diǎn)數(shù)之和大于4的概率.

解答 解:同時(shí)擲兩顆均勻的骰子,
基本事件總數(shù)n=6×6=36,
所得點(diǎn)數(shù)之和大于4的對(duì)立事件是所得點(diǎn)數(shù)之和不大于4,
所得點(diǎn)數(shù)之和不大于4包含的基本事件有:
(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),
共6個(gè),
∴所得點(diǎn)數(shù)之和大于4的概率p=1-$\frac{6}{36}$=$\frac{5}{6}$.
故答案為:$\frac{5}{6}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意互斥事件概率加法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow m=(\sqrt{3}sin2x-1,cosx)$,$\overrightarrow n=(1,-2cosx)$,$f(x)=\overrightarrow m•\overrightarrow n$,x∈R.
(1)求f(x)的單調(diào)增區(qū)間及對(duì)稱中心;
(2)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若f(A)=0,b=1,△ABC的面積為$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|(x-3)(x+1)≤0},B={x|-2<x≤2},則A∩B=( 。
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$sin(θ-\frac{π}{6})=\frac{{\sqrt{3}}}{3}$,則$cos(\frac{π}{3}-2θ)$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{3}{4}$x,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{5}{3}$C.$\frac{{\sqrt{7}}}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,集合A={x|x2-2x-8>0},B={1,5},則集合(∁UA)∩B為( 。
A.{x|1<x<5}B.{x|x>5}C.{1}D.{1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在二項(xiàng)式${(\frac{1}{2x}+2x)^n}$的展開式中,第一、二項(xiàng)及最后兩項(xiàng)的二項(xiàng)式系數(shù)之和共為18,則展開式中x4的系數(shù)為448.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)α為銳角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$.
(1)求cos($α-\frac{π}{3}$)的值;
(2)求cos(2α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案