13.2016年9月,第22屆魯臺經(jīng)貿(mào)洽談會在濰坊魯臺會展中心舉行,在會展期間某展銷商銷售一種商品,根據(jù)市場調(diào)查,每件商品售價(jià)x(元)與銷量t(萬元)之間的函數(shù)關(guān)系如圖所示,又知供貨價(jià)格與銷量呈反比,比例系數(shù)為20.(注:每件產(chǎn)品利潤=售價(jià)-供貨價(jià)格)
(1)求售價(jià)15元時(shí)的銷量及此時(shí)的供貨價(jià)格;
(2)當(dāng)銷售價(jià)格為多少時(shí)總利潤最大,并求出最大利潤.

分析 (1)每件商品售價(jià)x(元)與銷量t(萬件)之間的函數(shù)關(guān)系為t=20-x(0≤x≤20),設(shè)價(jià)格為y,則y=$\frac{20}{t}$,即可求售價(jià)15元時(shí)的銷量及此時(shí)的供貨價(jià)格;
(2)總利潤L=(x-$\frac{20}{t}$)t=xt-20=x(20-x)-20≤$(\frac{x+20-x}{2})^{2}$-20=80,可得結(jié)論.

解答 解:(1)每件商品售價(jià)x(元)與銷量t(萬件)之間的函數(shù)關(guān)系為t=20-x(0≤x≤20),
設(shè)價(jià)格為y,則y=$\frac{20}{t}$,x=15時(shí),t=5萬件,y=4萬元;
(2)總利潤L=(x-$\frac{20}{t}$)t=xt-20=x(20-x)-20≤$(\frac{x+20-x}{2})^{2}$-20=80,
當(dāng)且僅當(dāng)x=10元時(shí)總利潤最大,最大利潤80萬元.

點(diǎn)評 此題考查了一次函數(shù)與二次函數(shù)的知識,考查學(xué)生利用數(shù)學(xué)知識解決實(shí)際問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.棱臺的兩底面面積為S1、S2,中截面(過各棱中點(diǎn)的面積)面積為S0,那么( 。
A.$2\sqrt{S_0}=\sqrt{S_1}+\sqrt{S_2}$B.${S_0}=\sqrt{{S_1}{S_2}}$C.2S0=S1+S2D.S02=2S1S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊是a,b,c,已知a=$\sqrt{3}$c,cos2B=$\frac{1}{2}$,B為鈍角.
(1)求B;
(2)若b=$\sqrt{7}$,求AC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過點(diǎn)P(1,2),并且在兩坐標(biāo)軸上的截距相等的直線方程是(  )
A.x+y-3=0或x-2y=0B.x+y-3=0或2x-y=0
C.x-y+1=0或x+y-3=0D.x-y+1=0或2x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示的正四棱臺的上底面邊長為2,下底面邊長為8,高為3$\sqrt{2}$,則它的側(cè)棱長為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線x=2y2的焦點(diǎn)坐標(biāo)是( 。
A.(1,0)B.($\frac{1}{2}$,0)C.($\frac{1}{8}$,0)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F(-c,0)和虛軸端點(diǎn)E的直線交雙曲線的右支于點(diǎn)P,若E為線段FP的中點(diǎn),則該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖的程序框圖.輸出的x的值是(  )
A.2B.14C.11D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,a3=6且Sn+1=3Sn,則a1+a5等于( 。
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

查看答案和解析>>

同步練習(xí)冊答案