A. | ($\frac{π}{2},2}$) | B. | ($\frac{π}{4}$,$\sqrt{2}}$) | C. | (-$\frac{π}{2}$,2) | D. | ($\frac{3π}{8}$,0) |
分析 根據(jù)余弦函數(shù)的圖象與性質(zhì),令2x-$\frac{π}{4}}$=kπ+$\frac{π}{2}$,k∈Z,求出x的值即可得出函數(shù)y圖象的一個對稱中心.
解答 解:令2x-$\frac{π}{4}}$=kπ+$\frac{π}{2}$,k∈Z,
解得x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z,
當k=0時,x=$\frac{3π}{8}$,此時y=0;
所以函數(shù)y=2cos(2x-$\frac{π}{4}}$)圖象的一個對稱中心是($\frac{3π}{8}$,0).
故選:D.
點評 本題考查了余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{5}$ | C. | $\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 13,4 | B. | 13,8 | C. | 7,8 | D. | 7,16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-2,0} | B. | {-2} | C. | {-2,3} | D. | {0,3} |
查看答案和解析>>