分析 設(shè)橢圓上兩點A(x1,y1)、B(x2,y2)關(guān)于直線y=4x+m對稱,AB中點為M(x0,y0),利用平方差法與直線y=4x+m可求得x0=-m,y0=-3m,點M(x0,y0)在橢圓內(nèi)部,將其坐標代入橢圓方程即可求得m的取值范圍.
解答 解:∵$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,故3x2+4y2-12=0,
設(shè)橢圓上兩點A(x1,y1)、B(x2,y2)關(guān)于直線y=4x+m對稱,AB中點為M(x0,y0),
則3x12+4y12-12=0,①
3x22+4y22-12=0,②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
即 3•2x0•(x1-x2)+4•2y0•(y1-y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3}{4}$•$\frac{{x}_{0}}{{y}_{0}}$=-$\frac{1}{4}$.
∴y0=3x0,代入直線方程y=4x+m得x0=-m,y0=-3m;
因為(x0,y0)在橢圓內(nèi)部,
∴3m2+4•(-3m)2<12,即3m2+36m2<12,
解得-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.
故答案為:-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$
點評 本題考查直線與圓錐曲線的綜合問題,著重考查平方差法的應用,突出化歸思想的考查,屬于難題
科目:高中數(shù)學 來源: 題型:選擇題
A. | 經(jīng)過一條直線和這條直線外一點,有且只有一個平面 | |
B. | 經(jīng)過兩條相交直線,有且只有一個平面 | |
C. | 平面α與平面β相交,它們只有有限個公共點 | |
D. | 如果兩個平面有三個不共線的公共點,那么這兩個平面重合 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 3 | -2 | 4 | $\sqrt{3}$ |
y | $-2\sqrt{3}$ | 0 | -4 | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
B. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” | |
C. | 在△ABC中,A>B是cosA<cosB的必要不充分條件 | |
D. | 若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}$π | D. | $\frac{5}{6}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,$\frac{1}{4}$) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{4}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com