1.在等差數(shù)列{an}中,公差d≠0,且a1,a4,a10成等比數(shù)列,則$\frac{{a}_{1}}lez64xu$的值為3.

分析 運(yùn)用等比數(shù)列的性質(zhì)和等差數(shù)列的通項(xiàng)公式,化簡(jiǎn)整理即可得到所求.

解答 解:等差數(shù)列{an}中,公差d≠0,且a1,a4,a10成等比數(shù)列,
可得a42=a1a10,
即有(a1+3d)2=a1(a1+9d),
化為9d2+6a1d=9a1d,
d≠0,可得3d=a1,
可得$\frac{{a}_{1}}zemepbw$的值為3,
故答案為:3.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì),考查方程思想,以及化簡(jiǎn)整理的運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|tx-2|-|tx+1|,a∈R.
(1)當(dāng)t=1時(shí),解不等式f(x)≤1;
(2)若對(duì)任意實(shí)數(shù)t,f(x)的最大值恒為m,求證:對(duì)任意正數(shù)a,b,c,當(dāng)a+b+c=m時(shí),$\sqrt{a}+\sqrt+\sqrt{c}$≤m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若(x-i)i=y+2i,x,y∈R,其中i為虛數(shù)單位,則復(fù)數(shù)x+yi=( 。
A.2+iB.-2+iC.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(-∞,0),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則( 。
A.f(-4)<f(3)<f(-2)B.f(-2)<f(3)<f(-4)C.f(3)<f(-2)<f(-4)D.f(-4)<f(-2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在某城市氣象部門的數(shù)據(jù)中,隨機(jī)抽取了100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表:
空氣質(zhì)量指數(shù)t(0,50](50,100](100,150](150,200](200,300](300,+∞)
質(zhì)量等級(jí)優(yōu)輕微污染輕度污染中度污染嚴(yán)重污染
天數(shù)K52322251510
(1)在該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量t(t取整數(shù))存在如下關(guān)系y=$\left\{\begin{array}{l}t,t≤100\\ 2t-100,100<t≤300\end{array}$,且當(dāng)t>300時(shí),y>500估計(jì)在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;
(2)若在(1)中,當(dāng)t>300時(shí),y與t的關(guān)系擬合于曲線$\hat y=a+blnt$,現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且$\sum_{i=1}^{10}{ln{t_i}}=70,\sum_{i=1}^{10}{y_i}=6000,\sum_{i=1}^{10}{{y_i}ln{t_i}}$=42500,${\sum_{i=1}^{10}{({ln{t_i}})}^2}$=500,求擬合曲線方程.
(附:線性回歸方程$\widehat{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-{n}_{x}^{-}{•}_{y}^{-}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-{{n}_{x}^{-}}^{2}}$,a=$\widehat{y}$-b$\widehat{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}滿足a1=$\frac{3}{4}$,an+1-an=2n+1,則數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Sn=$\frac{4n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知遞增等差數(shù)列{an}的前n項(xiàng)和為Sn,a3a5=45,S7=49,則數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和為( 。
A.$\frac{2n}{2n-1}$B.$\frac{n}{2n-1}$C.$\frac{2n}{2n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知I是虛數(shù)單位,若(2+i)(m-2i)是實(shí)數(shù),則實(shí)數(shù)m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,等腰梯形AMNB內(nèi)接于半圓O,直徑AB=4,MN=2,MN的中點(diǎn)為C,則$\overrightarrow{AM}$•$\overrightarrow{BC}$的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案