6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1(-c,0),F(xiàn)2(c,0),以線段F1F2為直徑的圓與雙曲線在第二象限的交點為P,若直線PF2與圓E:(x-$\frac{c}{2}$)2+y2=$\frac{^{2}}{16}$相切,則雙曲線的漸近線方程是( 。
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

分析 求出|PF1|=4r=b,所以|PF2|=2a+b,因此b2+(2a+b)2=4c2,即可求出雙曲線的漸近線方程.

解答 解:設(shè)切點為M,則EM∥PF1,又$\frac{{F}_{2}E}{{F}_{2}{F}_{1}}$=$\frac{1}{4}$,所以|PF1|=4r=b,所以|PF2|=2a+b,因此b2+(2a+b)2=4c2,
所以b=2a,所以漸近線方程為y=±2x.
故選:B.

點評 本題考查雙曲線的方程與性質(zhì),考查直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.中國傳統(tǒng)文化中不少優(yōu)美的古詩詞很講究對仗,如“明月松間照,清泉石上流”中明月對清泉同為自然景物,明和清都是形容詞,月和泉又都是名詞,數(shù)學(xué)除了具有簡潔美、和諧美、奇異美外,也具有和古詩詞中對仗類似的對稱美.請你判斷下面四個選項中,體現(xiàn)數(shù)學(xué)對稱美的是( 。
A.“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{100}$”表示成“$\sum_{k=1}^{100}{\frac{1}{k}}$”
B.平面上所有二次曲線的一般形式均可表示成:Ax2+Bxy+Cy2+Dx+Ey+F=0
C.正弦定理:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$
D.123456789×9+10=1111111111

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.輾轉(zhuǎn)相除法,又名歐幾里得算法,乃求兩個正整數(shù)之最大公因子的算法.它是已知最古老的算法,在中國則可以追溯至東漢出現(xiàn)的《九章算術(shù)》,圖中的程序框圖所表述的算法就是歐幾里得輾轉(zhuǎn)相除法,若輸入a=5280,b=12155,則輸出的b=55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線E:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線E交于A,B兩點,E的準(zhǔn)線與x軸交于點C,△CAB的面積為4,以點D(3,0)為圓心的圓D過點A,B.
(Ⅰ)求拋物線E和圓D的方程;
(Ⅱ)若斜率為k(|k|≥1)的直線m與圓D相切,且與拋物線E交于M,N兩點,求$\overrightarrow{FM}•\overrightarrow{FN}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.運行如圖所示框圖的相應(yīng)程序,若輸入a,b的值分別為log43和log34,則輸出M的值是(  )
A.0B.1C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x,x>0\\{2^x},x≤0\end{array}\right.$,若$f(a)>\frac{1}{2}$,則實數(shù)a的取值范圍是( 。
A.$({0,\frac{{\sqrt{3}}}{3}})$B.(-1,0]C.$({-1,\frac{{\sqrt{3}}}{3}})$D.$({-1,0})∪({0,\frac{{\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y-2≤0\\ 5x-3y-12≥0\\ y≤3\end{array}\right.$當(dāng)目標(biāo)函數(shù)z=ax+by(a>0,b>0)在該約束條件下取得最小值1時,則$\frac{1}{3a}+\frac{2}$的最小值為( 。
A.$4+2\sqrt{2}$B.$4\sqrt{2}$C.$3+2\sqrt{2}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$表示的平面區(qū)域是一個三角形,則a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知{an}是公比不等于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,且a3=3,S3=9
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}={log_2}\frac{3}{{{a_{2n+3}}}}$,若${c_n}=\frac{4}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案