8.已知函數(shù)$f(x)=ln\frac{x}{2}+\frac{1}{2}$,g(x)=ex-2,若存在x1>0,x2∈R,使得f(x1)=g(x2),則x1-x2的最小值為ln2.

分析 求出x1-x2的解析式,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出x1-x2的最小值即可.

解答 令 y=ex2-2,則 x2=lny+2,令y=ln$\frac{{x}_{1}}{2}$+$\frac{1}{2}$,可得 x1=2${e}^{y-\frac{1}{2}}$,
則x1-x2=2${e}^{y-\frac{1}{2}}$-lny-2,∴(x1-x2)′=2${e}^{y-\frac{1}{2}}$-$\frac{1}{y}$,
顯然,(x1-x2)′是增函數(shù),觀察可得當y=$\frac{1}{2}$時,(x1-x2)′=0,故(x1-x2)′有唯一零點.
故當y=$\frac{1}{2}$時,x1-x2取得最小值為2e0-ln$\frac{1}{2}$-2=ln2,
故答案為:ln2.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義為n個正數(shù)p1,p2,p3…pn的“均倒數(shù)”,若已知數(shù)列{an}的前n項的“均倒數(shù)”為$\frac{1}{2n+1}$,又${b_n}=\frac{{{a_n}+1}}{4}$,則$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+$…$+\frac{1}{{{b_{2015}}{b_{2016}}}}$=( 。
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ax2+bx(a>0,b>0)在點(1,f(1))處的切線斜率為2,則$\frac{8a+b}{ab}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個不等的實數(shù)解,設(shè)m=b+2c,則m的取值范圍是m=0或m≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列函數(shù)中,單調(diào)增區(qū)間是(-∞,0]的是④.
①y=-$\frac{1}{x}$、趛=-(x-1)③y=x2-2、躽=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.了研究某種細菌在特定環(huán)境下隨時間變化的繁殖情況,得如下實驗數(shù)據(jù):
天數(shù)t(天)34567
繁殖個數(shù)y(千個)2.5344.56
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測t=8時,細菌繁殖個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=|x|的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某地區(qū)2011年至2015年農(nóng)村居民家庭人均純收入y(單位:萬元)的數(shù)據(jù)如表:
年份20112012201320142015
年份代號t12345
人均純收入y2.93.33.64.44.8
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2011年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2016年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\left\{{\begin{array}{l}{\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x}•\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}}\\{\hat a=\overline y-\hat b\overline x}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=x3-3x(-1<x<1)( 。
A.有最大值,但無最小值B.有最大值,也有最小值
C.無最大值,也無最小值D.無最大值,但有最小值

查看答案和解析>>

同步練習(xí)冊答案