8.某廠家為了解銷售轎車臺(tái)數(shù)與廣告宣傳費(fèi)之間的關(guān)系,得到如表統(tǒng)計(jì)數(shù)據(jù)表:根據(jù)數(shù)據(jù)表可得回歸直線方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=2.4$,$\widehata=\overline y-\widehatb\overline x$,據(jù)此模型預(yù)測(cè)廣告費(fèi)用為9萬元時(shí),銷售轎車臺(tái)數(shù)為( 。
廣告費(fèi)用x(萬元)23456
銷售轎車y(臺(tái)數(shù))3461012
A.17B.18C.19D.20

分析 根據(jù)表中數(shù)據(jù)計(jì)算$\overline{x}$、$\overline{y}$,由回歸直線方程過樣本中心點(diǎn)求出$\stackrel{∧}{a}$的值,寫出回歸方程,利用回歸方程計(jì)算x=9時(shí)$\stackrel{∧}{y}$的值即可.

解答 解:根據(jù)表中數(shù)據(jù),計(jì)算
$\overline{x}$=$\frac{1}{5}$×(2+3+4+5+6)=4,
$\overline{y}$=$\frac{1}{5}$×(3+4+6+10+12)=7,
且回歸直線方程為$\stackrel{∧}{y}$=2.4x+$\stackrel{∧}{a}$,
∴$\widehata=\overline y-\widehatb\overline x$=7-2.4×4=-2.6,
∴回歸方程為$\stackrel{∧}{y}$=2.4x-2.6;
當(dāng)x=9時(shí),$\stackrel{∧}{y}$=2.4×9-2.6=19,
即據(jù)此模型預(yù)測(cè)廣告費(fèi)用為9萬元時(shí),銷售轎車臺(tái)數(shù)為19.
故選:C.

點(diǎn)評(píng) 本題考查了回歸直線方程的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax2+lnx-x,a∈R且a≠0.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)x>1時(shí),f(x)<2ax恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)$f(x)={cos^2}(x-\frac{π}{12})+{sin^2}(x+\frac{π}{12})-1$是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a,b,c>0,求證$\frac{{{a^2}{b^2}+{b^2}{c^2}+{a^2}{c^2}}}{a+b+c}≥abc$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列結(jié)論:
①扇形的圓心角為120°,半徑為2,則扇形的弧長是$\frac{4π}{3}$;
②某小禮堂有25排座位,每排20個(gè),一次心理學(xué)講座,禮堂中坐滿了學(xué)生,會(huì)后為了了解有關(guān)情況,留下座位號(hào)是15的所有25名學(xué)生進(jìn)行測(cè)試,這里運(yùn)用的是系統(tǒng)抽樣方法;
③一個(gè)人打靶時(shí)連續(xù)射擊兩次,則事件“至少有一次中靶”與事件“兩次都不中靶”互為對(duì)立事件;
④若0<x<$\frac{π}{2}$,則tanx>x>sinx;
⑤若數(shù)據(jù)x1,x2,…,xn的方差為8,數(shù)據(jù)2x1+1,2x2+1,…,2xn+1的方差為16.
其中正確結(jié)論的序號(hào)為①②③④.  (把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),且圓M:x2+y2-$\frac{3}{2}$x-1=0過橢圓C的上、下、右三個(gè)頂點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)將橢圓C的橫坐標(biāo)變?yōu)樵瓉淼?\frac{\sqrt{2}}{2}$倍,縱坐標(biāo)不變.得到橢圓C′的方程,已知直線l與橢圓C′只有1個(gè)交點(diǎn),探究.是否存在兩個(gè)定點(diǎn)P(x1,0)、Q(x2,0),且x1<x2,使得P,Q到直線l的距離之積為1,如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo),如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{6}$)+1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)將f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位得到函數(shù)g(x)的圖象,若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,短軸頂點(diǎn)在圓x2+y2=4上.
(Ⅰ)求橢圓C方程;
(Ⅱ)已知點(diǎn)P(-2,3),若斜率為1的直線l與橢圓C相交于A,B兩點(diǎn),試探究以AB為底邊的等腰三角形ABP是否存在?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,$A=\frac{π}{3}$、$BC=3,AB=\sqrt{6}$,則角C等于( 。
A.$\frac{π}{4}或\frac{3π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案