分析 (Ⅰ)由題意可知:兩式相減2an=(n+1)an-nan-1,則$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,采用“累乘法”即可求得數(shù)列{an},bn=2${\;}^{{a}_{n}+1}$=2n+1;
(Ⅱ)由(Ⅰ)可知:$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$=$\frac{1}{n}$-$\frac{1}{n+1}$,即可求得Tn.
解答 解:(Ⅰ)當(dāng)n≥2時(shí),由2Sn=(n+1)an,則2Sn-1=nan-1,
兩式相減得:2an=(n+1)an-nan-1,整理得:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,
由an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{2}{1}$•1=n,(n≥2),
當(dāng)n=1時(shí),a1=1,
∴an=n,(n∈N*);
由bn=2${\;}^{{a}_{n}+1}$=2n+1.
∴{bn}的通項(xiàng)公式bn=2n+1;
(Ⅱ)由(Ⅰ),$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$=$\frac{1}{n(lo{g}_{2}{2}^{n+1})}$,
=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
由數(shù)列{$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$}的前n項(xiàng)和Tn,Tn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$.
數(shù)列{$\frac{1}{{a}_{n}•(lo{g}_{2}_{n})}$}的前n項(xiàng)和Tn=$\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和求法,考查“裂項(xiàng)法”,“累乘法”,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平面ACB′∥平面A′C′D | B. | B′C⊥BD′ | ||
C. | B′C⊥DC′ | D. | BD′⊥平面A′C′D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com