(本小題滿分12分)已知離心率為的橢圓上的點到
左焦點的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點任作一條與兩坐標(biāo)軸都不垂直的弦,若點在軸上,且使得為的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負(fù)半軸上有一點,且
(1)若過三點的圓恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的焦點分別為,且過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓內(nèi)一點,直線交橢圓于兩點,且為線段的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知A(1,1)是橢圓()上一點,F1,F(xiàn)2
是橢圓上的兩焦點,且滿足 .
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點,且直線AC,AD的斜率分別為 ,若存在常數(shù) 使/,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)雙曲線 (a>1,b>0)的焦距為2c,直線過點(a,0)和(0,b),且點(1,0)到直線 的距離與點(-1,0)到直線的距離之和s≥c.求雙曲線的離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點O,右焦點為F.若C的右準(zhǔn)線l的方程為x=4,離心率e=.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)點P為直線l上一動點,且在x軸上方.圓M經(jīng)過O、F、P三點,求當(dāng)圓心M到x軸的距離最小時圓M的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com