分析 (1)證明△ABC∽△ADB,得$\frac{AB}{AD}=\frac{AC}{AB}$=$\frac{BC}{DB}$,利用AB=6,CD=5,求出AC即可,求$\frac{BC}{BD}$的值;
(2)若∠BAC=60°,求出BC,DB,再求圓O的半徑.
解答 解:(1)∵AB是圓O切于點B,
∴∠ABC=∠ADB,
∵∠BAC=∠DAB,
∴△ABC∽△ADB,
∴$\frac{AB}{AD}=\frac{AC}{AB}$=$\frac{BC}{DB}$,
∵AB=6,CD=5,
∴36=AC(AC+5),
∴AC=4,
∴$\frac{BC}{DB}$=$\frac{2}{3}$;
(2)∠BAC=60°,則BC=$\sqrt{16+36-2×4×6×\frac{1}{2}}$=2$\sqrt{7}$,
DB=$\sqrt{36+81-2×6×9×\frac{1}{2}}$=3$\sqrt{7}$,
∴cos∠DCB=$\frac{25+28-63}{2×5×2\sqrt{7}}$=-$\frac{1}{2\sqrt{7}}$,
∴sin∠DCB=$\sqrt{\frac{27}{28}}$,
∴2R=$\frac{3\sqrt{7}}{\sqrt{\frac{27}{28}}}$=$\frac{14\sqrt{3}}{3}$.
點評 本題考查圓的切線的性質(zhì),考查圓的半徑,考查余弦定理、正弦定理的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-2) | B. | (-2,-1) | C. | (-1,0) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9π | B. | 324π | C. | 81π | D. | $\frac{243}{2}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.5 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com