8.有下列命題
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1<3x”;
②命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
③若函數(shù)f(x)=(x+1)(x+a)為偶函數(shù),則a=-1;
④若x>0,y>0且2x+y=1,則$\frac{1}{x}$+$\frac{1}{y}$的最小值是6
⑤設(shè)函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)x∈[0,1]時,f(x)=x+1,則f($\frac{3}{2}$)=$\frac{3}{2}$
其中所有正確說法的個數(shù)是( 。
A.1B.2C.3D.4

分析 寫出特稱命題的否定判斷①;寫出原命題的逆否命題判斷②;由函數(shù)為偶函數(shù)求得a值判斷③;利用基本不等式求得最值判斷④;由函數(shù)的性質(zhì)結(jié)合已知求得f($\frac{3}{2}$)的值判斷⑤.

解答 解:①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”,故①錯誤;
②命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”,故②正確;
③若函數(shù)f(x)=(x+1)(x+a)為偶函數(shù),則f(-x)-f(x)=(-x+1)(-x+a)-(x+1)(x+a)=-(a+1)x=0恒成立,
∴a=-1,故③正確;
④若x>0,y>0且2x+y=1,則$\frac{1}{x}$+$\frac{1}{y}$=$(\frac{1}{x}+\frac{1}{y})(2x+y)=3+\frac{y}{x}+\frac{2x}{y}$$≥3+2\sqrt{2}$,當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{2x+y=1}\\{y=\sqrt{2}x}\end{array}\right.$,即x=1-$\frac{\sqrt{2}}{2}$,y=$\sqrt{2}-1$時取“=”,故④錯誤;
⑤函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)x∈[0,1]時,f(x)=x+1,則f($\frac{3}{2}$)=f($\frac{3}{2}-2$)=-f($\frac{1}{2}$)=-$\frac{3}{2}$,故⑤錯誤.
∴正確說法的個數(shù)是2個.
故選:B.

點評 本題考查命題的真假判斷與應(yīng)用,考查了命題的否定,考查函數(shù)的性質(zhì),訓(xùn)練了利用基本不等式求最值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知隨機(jī)變量X服從兩點分布,且P(X=1)=0.6,設(shè)ξ=3X-2,那么Eξ=-0.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.對于數(shù)列{xn},若對任意n∈N*,都有$\frac{{x}_{n}+{x}_{n+2}}{2}$<xn+1成立,則稱數(shù)列{xn}為“減差數(shù)列”.設(shè)bn=2t-$\frac{tn-1}{{2}^{n-1}}$,若數(shù)列b3,b4,b5,…是“減差數(shù)列”,則實數(shù)t的取值范圍是( 。
A.(-1,+∞)B.(-∞,-1]C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}滿足a1=0,an+1=$\frac{{{a_n}-2}}{{\frac{{5{a_n}}}{4}-2}}$,則a2014等于( 。
A.0B.2C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列不等式中,①α∈(0,$\frac{π}{2}$)時,sin2α+$\frac{4}{{{{sin}^2}α}}$≥4;②log2(x2+1)≥1+log2x(x>0);③sinx+cosx≤$\sqrt{2}$;④22x+22y≥2x+y+1恒成立的有( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知偶函數(shù)f(x)=ax2+(b+1)x+c(a≠0)的定義域為(b,a-1),那么ab=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一名籃球運動員在比賽時罰球命中率為80%,則他在3次罰球中罰失1次的概率是( 。
A.0.384B.0.096C.0.616D.0.904

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.由動點P向圓x2+y2=2引兩條切線PA、PB,切點分別為A、B,∠APB=60°,則動點P的軌跡方程x2+y2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點,N為BC邊上一點,且CN=$\frac{1}{4}$BC,將△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF-CB,M為EF中點.
(1)求證:平面A′MN⊥平面A′BF;
(2)求二面角E-A′F-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案