6.從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,則與事件恰有兩個紅球既不對立也不互斥的事件是( 。
A.至少有一個黑球B.恰好一個黑球C.至多有一個紅球D.至少有一個紅球

分析 利用對立事件、互斥事件定義直接求解.

解答 解:從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,
在A中,至少有一個黑球與事件恰有兩個紅球是對立事件,故A不成立;
在B中,恰好一個黑球與事件恰有兩個紅球是互的事件,故B不成立;
在C中,至多一個紅球與事件恰有兩個紅球是對立事件,故C不成立;
在D中,至少一個紅球與事件恰有兩個紅球既不對立也不互斥的事件,故D成立.
故選:D.

點評 本題考查既不對立也不互斥的事件的判斷,是基礎(chǔ)題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=({1-\frac{2}{{1+{2^x}}}})tanx$的圖象( 。
A.關(guān)于x軸對稱B.關(guān)于y軸對稱C.關(guān)于y=x軸對稱D.關(guān)于原點軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等比數(shù)列{an}中,各項都是正數(shù),且3a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則等比數(shù)列{an}公比q等于( 。
A.3B.9C.27D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$的解集記作D,實數(shù)x,y滿足如下兩個條件:①?(x,y)∈D,y≥ax;②?(x,y)∈D,x-y≤a.則實數(shù)a的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐E-ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.
(Ⅰ)求證:BE=DE;
(Ⅱ)若AB=2$\sqrt{3}$,AE=3$\sqrt{2}$,平面EBD⊥平面ABCD,直線AE與平面ABD所成的角為45°,求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從集合{1,2,3,4}中任取兩個不同的數(shù),則這兩個數(shù)的和為3的倍數(shù)的槪率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在幾何體A1B1D1-ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點.
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求平面B1CD1與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)曲線C:$\frac{x^2}{4-k}-\frac{y^2}{1-k}=1$表示焦點在x軸上的橢圓,則k的范圍;
(2)求以F1(-2,0),F(xiàn)2(2,0)為焦點,且過點$M(\sqrt{6},2)$的橢圓標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在產(chǎn)品質(zhì)量檢驗時,常從產(chǎn)品中抽出一部分進行檢查.現(xiàn)在從98件正品和2件次品共100件產(chǎn)品中,任意抽出3件檢查.
(1)共有多少種不同的抽法?
(2)恰好有一件是次品的抽法有多少種?
(3)至少有一件是次品的抽法有多少種?
(4)恰好有一件是次品,再把抽出的3件產(chǎn)品放在展臺上,排成一排進行對比展覽,共有多少種不同的排法?

查看答案和解析>>

同步練習(xí)冊答案