16.有一天,某城市的珠寶店被盜走了價(jià)值數(shù)萬(wàn)元的鉆石.報(bào)案后,經(jīng)過(guò)三個(gè)月的偵察,查明作案人肯定是甲.乙.丙.丁中的一人.經(jīng)過(guò)審訊,這四個(gè)人的口供如下:
甲:鉆石被盜的那天,我在別的城市,所以我不是罪犯.
乙:丁是罪犯.
丙:乙是盜竊犯,三天前,我看見(jiàn)他在黑市上賣一塊鉆石.。阂彝矣谐,有意誣陷我.因?yàn)榭诠┎灰恢,無(wú)法判斷誰(shuí)是罪犯.經(jīng)過(guò)測(cè)謊試驗(yàn)知道,這四人只有一個(gè)人說(shuō)的是真話,那么你能判斷罪犯是( 。
A.B.C.D.

分析 根據(jù)題意,分析可得乙與丁說(shuō)法矛盾,則乙、丁之中有且只有一個(gè)是真話,進(jìn)而可得甲、丙的說(shuō)法都是假的,分析甲的說(shuō)法即可得答案.

解答 解:根據(jù)題意,分析可得:
乙與丁說(shuō)法矛盾,則乙、丁之中有且只有一個(gè)是真話,
則甲、丙的說(shuō)法都是假的,
而甲說(shuō):鉆石被盜的那天,我在別的城市,所以我不是罪犯,
則甲是罪犯;
故選:A.

點(diǎn)評(píng) 本題考查合情推理的應(yīng)用,關(guān)鍵是分析四人說(shuō)法中的矛盾,得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x3-x2-3,g(x)=$\frac{a}{x}$+xlnx的定義域都是[$\frac{1}{2}$,2]
(1)求f(x)的最大值;
(2)若對(duì)任意的s,t∈[$\frac{1}{2}$,2]都有f(s)≤g(t)成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知復(fù)數(shù)z=2+3i,則|z|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a>c>1>b>0,則(  )
A.b-a<b-cB.logab>logcbC.ab+cb<(a+c)bD.loga(c-b)>logc(a-b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2-2ax+1(a∈R)在[2,+∞)上單調(diào)遞增,
(1)若函數(shù)y=f(2x)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)a的集合A;
(2)若對(duì)于任意的a∈[1,2]時(shí),不等式f(2x+1)>3f(2x)+a恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知不等式|2x-a|≤3的解集為[-1,2].
(Ⅰ)求a的值;
(Ⅱ)若|x-m|<a,求證:|x|<|m|+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=-$\frac{5}{2}$x+b在區(qū)間(0,2)有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍;
(4)對(duì)于n∈N*,證明:$\frac{2}{1^2}+\frac{3}{2^2}+\frac{4}{3^2}+…+\frac{n+1}{n^2}>ln(n+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.為了了解青少年的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名青少年進(jìn)行調(diào)查,得到如下列聯(lián)表:
常  喝不常喝總  計(jì)
肥  胖2
不肥胖18
總  計(jì)30
已知從這30名青少年中隨機(jī)抽取1名,抽到肥胖青少年的概率為$\frac{4}{15}$.
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;(2)是否有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān)?
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若復(fù)數(shù)z滿足(1+2i)2z=1+z,則其共軛復(fù)數(shù)$\overline{z}$為(  )
A.$\frac{1}{8}$+$\frac{1}{8}$iB.-$\frac{1}{8}$-$\frac{1}{8}$iC.-$\frac{1}{8}$+$\frac{1}{8}$iD.$\frac{1}{8}$-$\frac{1}{8}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案