9.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=-1+sinθ\end{array}\right.(θ$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的圓心的極坐標(biāo)為(  )
A.$(1,-\frac{π}{2})$B.(1,π)C.(0,-1)D.$(1,\frac{π}{2})$

分析 圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=-1+sinθ\end{array}\right.(θ$為參數(shù)),化為普通方程:x2+(y+1)2=1,可得圓心C(0,-1),再利用互化公式即可得出.

解答 解:圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=-1+sinθ\end{array}\right.(θ$為參數(shù)),
化為普通方程:x2+(y+1)2=1,可得圓心C(0,-1)
圓C的圓心的極坐標(biāo)為(1,-$\frac{π}{2}$).
故選:A.

點(diǎn)評 本題考查了圓的參數(shù)方程化為普通方程、直角坐標(biāo)化為極坐標(biāo),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}滿足an+1=(-1)n(3an-1+1),n≥2,n∈N*,且a1=a2=1,Sn是數(shù)列{an}的前n項(xiàng)和,則S16=$\frac{7}{16}({3}^{8}-1)$-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)證明:DC⊥AB;
(2)若C在平面ABDE內(nèi)的正投影為H,求點(diǎn)H到平面BCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若非零向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow a$|=2|$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|,則向量$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=mex+x+1.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),證明:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}$,且f(x+2)=f(x),g(x)=$\frac{2x+5}{x+2}$,則方程f(x)=g(x)在區(qū)間[-6,2]上的所有實(shí)根之和為( 。
A.-5B.-7C.-9D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是某個(gè)幾何體的三視圖,則這個(gè)幾何體體積是( 。
A.$2+\frac{π}{2}$B.$2+\frac{π}{3}$C.$4+\frac{π}{3}$D.$4+\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=sinxsin$(\frac{π}{2}-x)+\sqrt{3}{cos^2}$x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,?n∈N*滿足$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$,且a1=1,正項(xiàng)數(shù)列{bn}滿足bn+12-bn+1=bn2+bn(n∈N*),其前7項(xiàng)和為42.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=$\frac{b_n}{a_n}+\frac{a_n}{b_n}$,數(shù)列{cn}的前n項(xiàng)和為Tn,若對任意正整數(shù)n,都有Tn≥2n+a,求實(shí)數(shù)a的取值范圍;
(3)將數(shù)列{an},{bn}的項(xiàng)按照“當(dāng)n為奇數(shù)時(shí),an放在前面;當(dāng)n為偶數(shù)時(shí),bn放在前面”的要求進(jìn)行排列,得到一個(gè)新的數(shù)列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,b6,…,求這個(gè)新數(shù)列的前n項(xiàng)和Pn

查看答案和解析>>

同步練習(xí)冊答案