15.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-6≤0}\\{x-y-1≤0}\\{x-1≥0}\end{array}\right.$,若z=ax+2y僅在點(diǎn)($\frac{7}{3}$,$\frac{4}{3}$)處取得最大值,則a的值可以為( 。
A.-8B.-4C.4D.8

分析 畫出約束條件的可行域,求出頂點(diǎn)坐標(biāo),利用z=ax+2y僅在點(diǎn)($\frac{7}{3}$,$\frac{4}{3}$)處取得最大值,利用斜率關(guān)系求解即可.

解答 解:如圖所示,約束條件$\left\{\begin{array}{l}{2x+y-6≤0}\\{x-y-1≤0}\\{x-1≥0}\end{array}\right.$所表示的區(qū)域?yàn)閳D中陰影部分:其中A(1,0),B($\frac{7}{3}$,$\frac{4}{3}$),C(1,4),
依題意z=ax+2y僅在點(diǎn)($\frac{7}{3}$,$\frac{4}{3}$)處取得最大值,可得$-\frac{a}{2}<-2$,即,a>4.
故選:D.

點(diǎn)評(píng) 本題考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知平面直角坐標(biāo)系內(nèi)的兩個(gè)向量$\overrightarrow a=(m,3m-4)$,$\overrightarrow b=(1,2)$,且平面內(nèi)的任一向量$\overrightarrow{c}$都可以唯一的表示成$\overrightarrow{c}$=$λ\overrightarrow{a}$+$μ\overrightarrow$(λ,μ為實(shí)數(shù)),則m的取值范圍是( 。
A.(-∞,4)B.(4,+∞)C.(-∞,4)∪(4,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一種在實(shí)數(shù)域和復(fù)數(shù)域上近似求解方程的方法可以設(shè)計(jì)如圖所示的程序框圖,若輸入的n為6時(shí),輸出結(jié)果為2.45,則m可以是( 。
A.0.6B.0.1C.0.01D.0.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M是“垂直對(duì)點(diǎn)集”,給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=$\frac{1}{{x}^{2}}$};
②M={(x,y)|y=sinx+1};
③={(x,y)|y=2x-2};
④M={(x,y)|y=log2x}
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是( 。
A.②③④B.①②④C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={x|x2≤1},N={x|log2x<1},則M∩N=(  )
A.[-1,2)B.[-1,1]C.(0,1]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知A,B,C是球O的球面上三點(diǎn),若三棱錐O-ABC體積的最大值為1,則球O的體積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-2|+|x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若f(x)≥(log2a)2-${log_{\sqrt{2}}}$a對(duì)任意實(shí)數(shù)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,點(diǎn)$P({1,\frac{3}{2}})$在橢圓C上,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)B,且$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}B}=\overrightarrow 0$.
(1)求橢圓C的方程;
(2)是否存在過點(diǎn)Q(4,0)的直線m與橢圓C相交于不同的兩點(diǎn)M,N,使得36|QP|2=35|QM|•|QN|?若存在,求出直線m的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入x萬元,甲、乙兩種商品分別可獲得y1,y2萬元的利潤,利潤曲線${P_1}:{y_1}=a{x^n}$,P2:y2=bx+c,如圖所示.
(1)求函數(shù)y1,y2的解析式;
(2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案