如圖,已知P是正方形ABCD外一點,且PA=3,PB=4,則PC的最大值是___________.

解析試題分析:過B作BE⊥BP,使E、A在BP的兩側,且BE=PB=4。顯然有:PE=.
∵ABCD是正方形,∴∠ABC=90°、AB=BC!唷螾BE+∠PBA=∠ABC+∠PBA=90°+∠PBA,∴∠ABE=∠CBP。∵BE=BP、AB=BC、∠ABE=∠CBP,∴△ABE≌△CBP,∴AE=PC。考查P、A、E三點,顯然有:AEPA+PE=3+!喈旤cP落在線段AE上時,AE有最大值為,∴PC的最長距離為
考點:三角形全等 三角形三邊關系
點評:本題的關鍵是能巧妙利用三角形全等的知識,構造全等三角形,把求PC的長轉化成
求AE的長,屬難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

已知二面角a--l--b為600,動點P、Q分別在a、b內,P到b的距離為,Q到a的距離為2, 則PQ兩點之間距離的最小值為         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

正方體的棱長為2,則與平面間的距離為__________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在長方體ABCD-A1B1C1D1中,AB=1,AD=2.若存在各棱長均相等的四面體P1P2P3P4,其中P1,P2,P3,P4分別在棱AB,A1B1,C1D1,CD所在的直線上,則此長方體的體積為       

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知的二面角,點A,,C為垂足,,BD,D為垂足,若AC=BD=DC=1則AB與面所成角的正弦值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知集合={直線},={平面},.若,給出下列四個命題:
  ② ③ ④ 其中所有正確命題的序號是         .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在長方體ABCD—A1B1C1D1中,AB=3,AD=4,AA1=5,則直線AC1與平面ABCD所成角的大小為         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,長方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,點E、F、G分別是DD1、AB、CC1的中點.直線A1E與GF所成角等于__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,AB是⊙O的直徑,C是圓周上不同于A、B的點,PA垂直于⊙O所在的平面,AE⊥PB于E,AF⊥PC于F,因此,         ⊥平面PBC.(填圖中的一條直線)

查看答案和解析>>

同步練習冊答案