已知向量,,設(shè)函數(shù)
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最小值和最大值.

(1)函數(shù)的最小正周;(2)函數(shù)在區(qū)間上的最大值為,最小值為.

解析試題分析:(1)先用二倍角公式化簡(jiǎn)得,因此函數(shù)的最小正周期為.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/1/14kmg4.png" style="vertical-align:middle;" />在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),即可求出函數(shù)在區(qū)間上的最大值和最小值.
試題解析:(1);
因此,函數(shù)的最小正周期為.                    6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/1/14kmg4.png" style="vertical-align:middle;" />在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,,,故函數(shù)在區(qū)間上的最大值為,最小值為.                  12分
考點(diǎn):三角函數(shù)的最值、向量與函數(shù)的綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的周期和單調(diào)遞增區(qū)間;
(2)設(shè)A,B,C為ABC的三個(gè)內(nèi)角,若AB=1, ,求s1nB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),鈍角(角對(duì)邊為)的角滿(mǎn)足.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,某市政府決定在以政府大樓為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個(gè)圖書(shū)館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設(shè)計(jì)要求該圖書(shū)館底面矩形的四個(gè)頂點(diǎn)都要在邊界上,圖書(shū)館的正面要朝市政府大樓.設(shè)扇形的半徑 ,,之間的夾角為.

(1)將圖書(shū)館底面矩形的面積表示成的函數(shù).
(2)求當(dāng)為何值時(shí),矩形的面積有最大值?其最大值是多少?(用含R的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

化簡(jiǎn):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(θ)=sinθ+cosθ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(,),求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω: 上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=sin2ωx+sinωxsin(ω>0)的最小正周期為.
(1)寫(xiě)出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<αx<π.
(1)若α,求函數(shù)f(x)=b·c的最小值及相應(yīng)x的值;
(2)若ab的夾角為,且ac,求tan 2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)f(x)=sinsinsinxcosx(x∈R).
(1)求f的值;
(2)在△ABC中,若f=1,求sinB+sinC的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案