【題目】已知函數(shù)f(x)=loga(1﹣x)﹣loga(1+x)(a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)求滿足不等式f(x)<0的x的取值范圍.
【答案】
(1)解:解 得,﹣1<x<1;
∴f(x)的定義域?yàn)椋ī?,1)
(2)解:f(﹣x)=loga(1+x)﹣loga(1﹣x)=﹣f(x);
∴f(x)為奇函數(shù)
(3)解:由f(x)<0得,loga(1﹣x)<loga(1+x);
①若a>1,則:
;
∴0<x<1;
即f(x)<0的x的取值范圍為(0,1);
②若0<a<1,則:
;
∴﹣1<x<0;
即f(x)<0的x的取值范圍為(﹣1,0)
【解析】(1)只需解不等式組 即可得出f(x)的定義域;(2)求f(﹣x)即可得到f(﹣x)=﹣f(x),從而得出f(x)為奇函數(shù);(3)討論a:a>1,和0<a<1,根據(jù)f(x)的定義域及對(duì)數(shù)函數(shù)的單調(diào)性即可求得每種情況下原不等式的解.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化肥廠甲、乙兩個(gè)車(chē)間包裝肥料,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲 | 102 | 101 | 99 | 98 | 103 | 98 | 99 |
乙 | 110 | 115 | 90 | 85 | 75 | 115 | 110 |
(1)這種抽樣方法是哪一種?
(2)將兩組數(shù)據(jù)用莖葉圖表示.
(3)將兩組數(shù)據(jù)進(jìn)行比較,說(shuō)明哪個(gè)車(chē)間產(chǎn)品較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}滿足:a2=3,a5﹣2a3+1=0.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:{bn}=(﹣1)nann(+n∈N*),求{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C過(guò)點(diǎn)(1,2)和(2,1),且圓心在直線x+y﹣4=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)若一束光線l自點(diǎn)A(﹣3,3)發(fā)出,射到x軸上,被x軸反射到圓C上,若反射點(diǎn)為M(a,0),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)的耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:y=(0<x≤120).已知甲、乙兩地相距100千米.
(Ⅰ)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從1開(kāi)始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個(gè)三角形框架在圖中上下或左右移動(dòng),使每次恰有九個(gè)數(shù)在此三角形內(nèi),則這九個(gè)數(shù)的和可以為( )
A.2097 B.2112 C.2012 D.2090
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要設(shè)計(jì)一張矩形廣告,該廣告含有大小相等的左右兩個(gè)矩形欄目(即圖中陰影部分),這兩欄的面積之和為18000cm2 , 四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm.
(1)設(shè)矩形欄目寬度為xcm,求矩形廣告面積S(x)的表達(dá)式
(2)怎樣確定廣告的高與寬的尺寸(單位:cm),能使矩形廣告面積最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), = .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn).
(1)求滿足條件的最小正整數(shù)的值;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為( )
·(1)y= ,y=x﹣5;
·(2)y= ,y= ;
·(3)y=|x|,y= ;
·(4)y=x,y= ;
·(5)y=(2x﹣5)2 , y=|2x﹣5|.
A.(1),(2)
B.(2),(3)
C.(3),(5)
D.(3),(4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com