2.若等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=20,則a3等于( 。
A.3B.4C.5D.6

分析 利用等差數(shù)列的通項(xiàng)公式求和公式及其性質(zhì)即可得出.

解答 解:由等差數(shù)列的求和公式及其性質(zhì)可得:S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=5a3=20,解得a3=4.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在空間直角坐標(biāo)系Oxyz中,z軸上的點(diǎn)M到點(diǎn)A(1,0,2)與點(diǎn)B(1,-3,1)的距離相等,則點(diǎn)M的坐標(biāo)是(  )
A.(0,0,-3)B.(0,0,3)C.(0,0,$\sqrt{10}$)D.(0,0,-$\sqrt{10}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,1).若m實(shí)數(shù),且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m=( 。
A.-7B.-6C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果直線l將圓x2+y2+2x-4y=0平分,且不過第一象限,那么l的斜率的取值范圍是( 。
A.[0,2]B.(0,2)C.(-∞,0)∪(2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若bcosC+ccosB=2acosA,則A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC滿足∠BAC=60°,BC=2,對(duì)于△ABC外接圓上一點(diǎn)D,滿足∠BCD=45°,則BD=( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|x2-2x+2a-a2≤0},B={x|sin(πx-$\frac{π}{3}}$)+$\sqrt{3}$cos(πx-$\frac{π}{3}}$)=0}.
(1)若2∈A,求a的取值范圍;
(2)若A∩B恰有3個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)P(x,y)在橢圓x2+4y2=4上,則$\frac{3}{4}{x^2}+2x-{y^2}$的最大值為( 。
A.8B.7C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四邊形ABCD和ABEG均為平行四邊形,點(diǎn)E在平面ABCD內(nèi)的射影恰好為點(diǎn)A,以BD為直徑的圓經(jīng)過點(diǎn)A,C,AG的中點(diǎn)為F,CD的中點(diǎn)為P,且AD=AB=AE
(Ⅰ)求證:平面EFP⊥平面BCE
(Ⅱ)求二面角P-EF-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案