13.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,1).若m實(shí)數(shù),且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m=( 。
A.-7B.-6C.7D.6

分析 利用平面向量坐標(biāo)運(yùn)算法則先求出$\overrightarrow{a}+\overrightarrow$,再由($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,利用向量垂直的性質(zhì)能求出m.

解答 解:∵向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,1).m實(shí)數(shù),
∴$\overrightarrow{a}+\overrightarrow$=(3,m+1),
∵($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,
∴($\overrightarrow{a}+\overrightarrow$)$•\overrightarrow$=6+m+1=0,
解得m=-7.
故選:A.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量坐標(biāo)運(yùn)算法則、向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的內(nèi)角 A、B、C 的對(duì)邊分別為a、b、c,已知A=$\frac{π}{3}$,a=2$\sqrt{21}$,b=10,則c=( 。
A.2 或8B.2C.8D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,則f(-2)+f(1)=(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖是一個(gè)求函數(shù)值的算法流程圖,若輸入的x的值為5,則輸出的y的值為-15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=g(x)•h(x),其中函數(shù)g(x)=ex,h(x)=x2+ax+a.
(1)求函數(shù)g(x)在(1,g(1))處的切線方程;
(2)當(dāng)0<a<2時(shí),求函數(shù)f(x)在x∈[-2a,a]上的最大值;
(3)當(dāng)a=0時(shí),對(duì)于給定的正整數(shù)k,問函數(shù)F(x)=e•f(x)-2k(lnx+1)是否有零點(diǎn)?請(qǐng)說明理由.(參考數(shù)據(jù)e≈2.718,$\sqrt{e}$≈1.649,e$\sqrt{e}$≈4.482,ln2≈0.693)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}-1({x≤0})\\ f({x-1})+1({x>0})\end{array}\right.$,把函數(shù)g(x)=f(x)-x的零點(diǎn)的順序排列成一個(gè)數(shù)列,則該數(shù)列的通項(xiàng)公式為( 。
A.${a_n}=\frac{{n({n-1})}}{2}$B.an=n(n-1)C.an=n-1D.${a_n}={2^n}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若圓x2+y2=1與圓x2+y2+6x-8y+m=0相切,則m的值為-11或9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=20,則a3等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x=1”是“x2+x-2=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案