10.在空間直角坐標(biāo)系O-xyz中,點(diǎn)(3,-1,m)平面Oxy對稱點(diǎn)為(3,n,-2),則m+n=1.

分析 在空間直角坐標(biāo)系O-xyz中,點(diǎn)(x,y,z)平面Oxy對稱點(diǎn)為(x,y,-z).

解答 解:∵在空間直角坐標(biāo)系O-xyz中,
點(diǎn)(3,-1,m)平面Oxy對稱點(diǎn)為(3,n,-2),
∴m=2,n=-1,
∴m+n=2-1=1.
故答案為:1.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間直角坐標(biāo)系的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的值.
(1)求y=(x+1)(x+2)(x+3)的導(dǎo)數(shù)
(2)${∫}_{0}^{1}$(x-x2)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=|x|(x2-3t)(t∈R).
(1)當(dāng)t=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)g(x)=|f(x)|(x∈[0,2]),求g(x)的最大值F(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是AB邊的中點(diǎn),現(xiàn)把△ACP沿CP折成如圖2所示的三棱錐A-BCP,使得$AB=\sqrt{10}$.
(1)求證:平面ACP⊥平面BCP;
(2)求平面ABC與平面ABP夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)a為實(shí)數(shù),f(x)=$\left\{\begin{array}{l}{{x}^{3},x>a}\\{\frac{1}{3}{x}^{3},x≤a}\end{array}\right.$,g(x)=ax|x-a|.
(1)若x≤a時,方程f(x)=g(x)無解,求a的范圍;
(2)設(shè)函數(shù)F(x)=f(x)-g(x).
①若h(x)=F′(x),寫出函數(shù)h(x)的最小值;
②當(dāng)x>a時,求函數(shù)H(x)=F(x)-x的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y=4-x2與直線y=4x的兩個交點(diǎn)為A、B,點(diǎn)P在拋物線上從A向B運(yùn)動,當(dāng)△PAB的面積為最大時,點(diǎn)P的坐標(biāo)為( 。
A.(-3,-5)B.(-2,0)C.(-1,3)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)若不等式|x-m|<1成立的充分不必要條件為$\frac{1}{3}$<x<$\frac{1}{2}$求實(shí)數(shù)m的取值范圍;
(Ⅱ)關(guān)于x的不等式|x-3|+|x-5|<a的解集不是空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在(0,$\frac{π}{2}$),上的函數(shù)f(x),f′(x)是導(dǎo)函數(shù),滿足f(x)<f′(x)tanx,則下列表達(dá)式正確的是(  )
A.$\sqrt{3}$•f($\frac{π}{4}$)>$\sqrt{2}$•f($\frac{π}{3}$)B.f(1)>2•f($\frac{π}{6}$)•sin1C.$\sqrt{2}$•f($\frac{π}{6}$)>f($\frac{π}{4}$)D.$\sqrt{3}$•f($\frac{π}{6}$)>f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.矩形ABCD中,P為矩形ABCD所在平面內(nèi)一點(diǎn),且滿足PA=3,PC=4.矩形對角線AC=6,則$\overrightarrow{PB}•\overrightarrow{PD}$=-$\frac{11}{2}$.

查看答案和解析>>

同步練習(xí)冊答案