6.兩座燈塔A和B與海洋觀察站C的距離分別為10km和20km,燈塔A在觀察站C的北偏東15°方向上,燈塔B在觀察站C的南偏西75°方向上,則燈塔A與燈塔B的距離為10$\sqrt{7}$km.

分析 在△ABC中使用余弦定理計算AB.

解答 解:由題意可知AC=10,BC=20,∠ACB=120°,
由余弦定理得AB=$\sqrt{A{C}^{2}+B{C}^{2}-2AC•BC•cos∠ACB}$=$\sqrt{100+400-2×10×20×(-\frac{1}{2})}$=$\sqrt{700}$=10$\sqrt{7}$,
故答案為:10$\sqrt{7}$.

點評 本題考查了余弦定理得應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$,該函數(shù)圖象過點C$(\frac{3π}{8},0)$,函數(shù)圖象上與點C相鄰的一個最高點為D$(\frac{π}{8},2)$,
(1)求該函數(shù)的解析式f(x).
(2)求函數(shù)f(x)在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$上的最值及其對應(yīng)的自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計算下列各式的值.
(1)$\frac{{tan{{53}°}+tan{7°}+tan{{120}°}}}{{tan{{53}°}•tan7{\;}°}}$;
(2)[2sin50°+sin10°(1+$\sqrt{3}tan{10°}$)]$\sqrt{1-cos{{160}°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,已知D是BC延長線上一點,點E為線段AD的中點,若$\overrightarrow{BC}$=2$\overrightarrow{CD}$,且$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$,則λ=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=aln(x+1)+bx+1
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(0,f(0))處的切線與直線2x+y-3=0平行,求a的值;
(2)若$b=\frac{1}{2}$,試討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓E的中心在原點,焦點F1,F(xiàn)2在y軸上,離心率為$\frac{{2\sqrt{2}}}{3}$,P是橢圓E上的點,以線段PF1為直徑的圓經(jīng)過F2,且$9\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)作直線l與橢圓交于兩個不同的點M,N,如果線段MN被直線2x+1=0平分,求直線l的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某商場新進(jìn)3000袋奶粉,為檢查其三聚氰胺是否超標(biāo),現(xiàn)采用系統(tǒng)抽樣的方法從中抽取150袋檢查,若第一組抽出的號碼是11,則第六十一組抽出的號碼為1211.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下表是一個有i行j列的表格.已知每行每列都成等差數(shù)列,
47a1,3a1,j
712a2,3a2,j
aa3,2a3,3a3,j
ai,1ai,2ai,3ai,j
其中ai,j表示表格中第i行第j列的數(shù),則a4,5=49,ai,j=2ij+i+j.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.?dāng)?shù)列{an}中,a1=3,對任意n∈N*,向量$\overrightarrow{a}$=(an+1,3)與$\overrightarrow$=(an,1)都平行,數(shù)列{bn}滿足bn=31-31log3an
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Bn的最大值.

查看答案和解析>>

同步練習(xí)冊答案