16.下列函數(shù)f(x)中,滿足“任意x1,x2∈(0,+∞),且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0”的是( 。
A.f(x)=$\frac{1}{x}$-xB.f(x)=x3C.f(x)=ln xD.f(x)=2x

分析 由對任意x1,x2∈(0,+∞),都有(x1-x2)[f(x1)-f(x2)]<0,我們可得函數(shù)f(x)在區(qū)間(0,+∞)上為減函數(shù),然后我們對答案中的四個函數(shù)逐一進行分析,即可得到答案.

解答 解:若對任意x1,x2∈(0,+∞),都有(x1-x2)[f(x1)-f(x2)]<0,
則f(x)在區(qū)間(0,+∞)上為減函數(shù),
A中,f(x)=$\frac{1}{x}$-x在區(qū)間(0,+∞)上為減函數(shù),滿足條件,
B中,f(x)=x3在區(qū)間(0,+∞)上為增函數(shù),不滿足條件,
C中,f(x)=lnx在區(qū)間(0,+∞)上為增函數(shù),不滿足條件,
D中,f(x)=2x在區(qū)間(0,+∞)上為增函數(shù),不滿足條件,
故選:A.

點評 本題考查了函數(shù)的單調(diào)性問題,考查常見函數(shù)的性質(zhì),是一道基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.實數(shù)a=0.3${\;}^{\sqrt{2}}$,b=log${\;}_{\sqrt{2}}$0.3,c=0.3${\;}^{\sqrt{3}}$,則實數(shù)a,b,c的大小關(guān)系為b<c<a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.給出下列命題:
①已知x∈R,則“x>1”是“x>2”的充分不必要條件;
②若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overline{a}$|-|$\overrightarrow$|,則存在實數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$;
③命題p:“?x∈R,ex>x+1”的否定是“?x∈R,ex<x+1”;
④方程x=sinx有且只有一個實數(shù)解;
⑤函數(shù)f(x)=4cos(2x+$\frac{π}{3}$)的一個對稱中心為$({\frac{π}{3},0})$.
其中正確命題的序號是②④ (把你認為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,在三棱錐ABCD中,AB=AC=BD=CD=3,AD=BC=2,點M,N分別為AD,BC的中點,則異面直線AN,CM所成的角的余弦值是( 。
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.-$\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.求值:2log2$\frac{1}{4}$+lg$\frac{1}{100}$+(${\sqrt{2}$-1)lg1=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知冪函數(shù)f(x)=(m2-m-1)xm在(0,+∞)上是增函數(shù),則m=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.中心在原點的橢圓長軸右頂點為(2,0),直線y=x-1與橢圓相交于M,N兩點,MN中點的橫坐標為$\frac{2}{3}$,則此橢圓標準方程是(  )
A.$\frac{x^2}{2}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{3}+\frac{y^2}{2}=1$D.$\frac{x^2}{4}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.空間四邊形ABCD的對角線AC=10,BD=6,M、N分別為AB、CD的中點,MN=7,則異面直線AC和BD所成的角等于(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列四組函數(shù),兩個函數(shù)相同的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=log33x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=($\sqrt{x}$)2,g(x)=|x|D.f(x)=x,g(x)=x0

查看答案和解析>>

同步練習冊答案